Lecture Slides

0. Course Overview

1. Introduction and Potential Outcomes

2. DAGs, Confounding, Backdoor Criterion

3. Effect Modification, Interaction, and Collapsibility

4. Selection Bias, Non-Compliance, and Measurement Error

5. IP Weighting and G-Computation

6. More PS Estimators and Double Robustness

7. Matching

8. G-Estimation

9. Survival

10. Time-Varying Treatment Part 1

11. Time-Varying Treatment Part 2

12. Instrumental Variable Analysis Part 1

13. Instrumental Variable Analysis Part 2

14. Machine Learning

16. Mediation