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ABSTRACT
Confidence interval procedures used in low-dimensional settings are often inappropriate for high-
dimensional applications. When many parameters are estimated, marginal confidence intervals associated
with themost significant estimates have very low coverage rates: They are too small and centered at biased
estimates. The problem of forming confidence intervals in high-dimensional settings has previously been
studied through the lens of selection adjustment. In that framework, the goal is to control the proportion
of noncovering intervals formed for selected parameters. In this article, we approach the problem by con-
sidering the relationship between rank and coverage probability. Marginal confidence intervals have very
low coverage rates for the most significant parameters and high rates for parameters with more boring
estimates. Many selection adjusted intervals have the same behavior despite controlling the coverage rate
within a selected set. This relationship between rank and coverage rate means that the parameters most
likely to be pursued further in follow-up or replication studies are the least likely to be covered by the con-
structed intervals. In this article, we propose rank conditional coverage (RCC) as a new coverage criterion
for confidence intervals in multiple testing/covering problems. The RCC is the expected coverage rate of
an interval given the significance ranking for the associated estimator. We also propose two methods that
use bootstrapping to construct confidence intervals that control the RCC. Because these methods make
use of additional information captured by the ranks of the parameter estimates, they often produce smaller
intervals thanmarginal or selection adjustedmethods. These methods are implemented in R (R Core Team,
2017) in the package rcc available on CRAN at https://cran.r-project.org/web/packages/rcc/index.html. Sup-
plementary material for this article is available online.

1. Introduction

In many fields including genomics, proteomics, biomedical
science, and neurology it is common to conduct “high-
dimensional” studies in which thousands or millions of
parameters are estimated. Often, one of the main goals of
these studies is to select or prioritize a small subset of fea-
tures for description and further investigation. Estimates of
selected parameters are often reported unadjusted and, when
confidence intervals are not entirely omitted, either marginal
or Bonferroni-corrected intervals are given. Many previous
authors have demonstrated the undesirable features of these
practices (Sun and Bull 2005; Efron 2011; Simon and Simon
2013 among others). In particular, parameter estimates selected
for reporting are usually chosen because they are the largest or
most significant. Unfortunately, these most extreme estimates
are also highly biased. This is known informally as the “winner’s
curse”: Large statistics tend to come from large parameters, but
they also tend to be large by chance.

There is a related phenomenon for confidence intervals:
Marginal confidence intervals almost always fail to cover
parameters associated with the most significant estimates
because they fail to account for the bias of these estimates.
This results in overly short intervals that are too far from zero.
Often this problem is recognized by investigators, but the
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most commonly used alternative, the Bonferroni correction,
yields enormous, uninformative intervals. Problems with the
Bonferroni correction have been described by Benjamini and
Yekutieli (2005), Zhong and Prentice (2008),Weinstein, Fithian,
and Benjamini (2013) and several others. This method does not
recenter the intervals and inflates their size symmetrically to
control the family-wise error rate. Intuitively, we know that the
largest estimates are more often too large than too small so most
of the upper extension provided by the Bonferroni confidence
intervals is unnecessary. Furthermore, the family-wise error rate
is a much more conservative criterion than is typically desired.

We will discuss several alternative coverage criteria for
high-dimensional settings and introduce a new criterion, rank
conditional coverage (RCC), which is the expected coverage
probability of an interval given the ranking of its corresponding
estimate. The RCC captures the idea that, when many parame-
ters are estimated, the rank of an estimate provides information
about its bias and the coverage probability of the associated con-
fidence interval. This criterion applies to all high-dimensional
studies regardless of whether or not selection is performed but
is particularly relevant when rank is used as a selection criterion
or parameters are prioritized by the ranks of their estimates.
One advantage to obtaining confidence intervals that control
the RCC, rather than selection adjusted confidence intervals, is
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that these intervals are not dependent on a particular selection
procedure—that is, the interval calculated for a particular
estimate will not change if the selection threshold is moved.
We discuss parametric and nonparametric bootstrap-based
approaches for obtaining RCC controlling confidence intervals
and explore their behavior and RCC in a few common settings
via simulation. The proposed methods are implemented in R (R
Core Team 2017) and available in the package rcc on CRAN
at https://cran.r-project.org/web/packages/rcc/index.html.

1.1. Coverage Criteria After Selection

Consider an analysis in which we would like to obtain esti-
mates and confidence intervals for parameters θ1, . . . , θp. Sup-
pose we have point estimates for each parameter θ̂1, . . . , θ̂p and
a marginally valid procedure for constructing confidence inter-
vals. By marginally valid we mean that for each parameter θ j,
the coverage probability of the α level confidence interval CIj
satisfies P[θ j ∈ CIj(α)] = 1 − α.

In the high-dimensional setting, the marginal confidence
interval will control the average coverage—that is, if we con-
struct 90% marginal confidence intervals, we can expect them
to cover 90% of the parameters. Typically, however, the entire set
of parameter estimates is not of interest and only the most sig-
nificant estimates are reported. Benjamini and Yekutieli (2005)
demonstrated that, for common selection rules, the expected
rate of coverage for marginal confidence intervals within a
selected subset of parameters will be much lower than the nom-
inal level, α. The marginal confidence interval achieves its aver-
age coverage by under-covering parameters associated with the
most extreme or significant estimates and over-covering more
boring parameters.

To quantify coverage of confidence intervals constructed for
a selected set, Benjamini and Yekutieli (2005) proposed the false
coverage statement rate (FCR), which measures the expected
proportion of noncovering intervals within the selected set. If
no parameters are selected, it is counted as no false statements
made.

False Coverage Statement Rate = E[Q] (1)

Q =
{∑

j∈S 1θ j �∈CI j
|S| |S| > 0

0 |S| = 0.

Benjamini and Yekutieli (2005) proposed a procedure provid-
ing FCR controlling confidence intervals which, like the Bon-
ferroni procedure, symmetrically inflates the size of marginally
valid intervals for all parameters. When selection is based on
parameter estimates exceeding a threshold, these are equivalent
to coverage (1 − |S|α

p )marginal intervals. This uniform inflation
can be excessive in some cases. For example, if one parameter
is very large, it will nearly always be selected. Thus, there is no
need to inflate that interval at all (a 1 − α marginal interval will
still control FCR). Additionally, the fact that highest ranked esti-
mates are more often too large than too small suggests that con-
fidence intervals should have longer tails extending toward the
bulk of the estimates than extending away from the bulk.

These issues are partially accounted for in more recent liter-
ature: Zhong and Prentice (2008), Weinstein, Fithian, and Ben-
jamini (2013), and Reid, Taylor, and Tibshirani (2017) all pro-
pose FCR controlling intervals which return to the marginal
interval for very large parameter estimates. Zhong and Pren-
tice (2008) and Weinstein, Fithian, and Benjamini (2013) both
condition on selecting all estimates larger than a (possibly data-
dependent) cutoff. Zhong and Prentice (2008) use a likelihood-
based approach to obtain asymptotically correct FCR while
Weinstein, Fithian, and Benjamini (2013) calculate exact inter-
vals under the assumption that parameter estimates are inde-
pendent with a known symmetric unimodal distribution. Reid,
Taylor, and Tibshirani (2017) conditioned on the identity of the
selected set and construct exact intervals for finite sample sizes
assuming that parameter estimates are drawn from independent
Gaussian distributions. All three of these intervals are asymmet-
ric about the original point estimate.

Despite these advances, controlling FCR remains an unsat-
isfying solution to confidence interval construction for high-
dimensional problems. FCR controlling methods achieve the
correct coverage rate within a subset in the same way that the
marginal intervals achieve the correct rate in the larger set—
with under-coverage of the (more interesting) highest ranked
parameters and over-coverage of (less interesting) more mod-
erately ranked parameters. We illustrate this pattern through a
simple example in Section 1.5

1.2. Rank Conditional Coverage

In Section 1.1, we observed that for unadjusted confidence
intervals as well as the selection adjusted alternatives, the
rank of an estimate is informative about the probability that
the associated confidence interval covers its target (see also
Section 1.5). We find this phenomenon undesirable since it
means that parameters associated with top ranked estimates
are covered at a much lower rate than parameters associated
with less significant estimates. Additionally, this observation
indicates that there is an opportunity to use more information
and construct better intervals.

We first introduce the concept of rank conditional coverage
(RCC) as a way to quantify the relationship between rank and
coverage probability. In the majority of cases, the most interest-
ing ranking of parameters is based on either the size of an asso-
ciated test statistic or a p-value. In general, we assume that we
have some ranking function s where s(i) gives the index of the
ith ranked estimate. For example, if we are ranking simply based
on the size of estimates, then

θ̂s(1) ≥ · · · ≥ θ̂s(p).

In this article, we will use the convention that a smaller rank
indicates that an estimate is more significant, so the most sig-
nificant estimate will have rank 1. In our examples, we focus
on simple common rankings but the RCC can be defined for
any scheme. In fact, the ranking scheme need not give a rank to
every estimate. For example, if the parameter estimates can be
grouped into highly correlated subsets such as LD blocks in a
genetic study, we might choose the most significant estimate in
each block and rank only within this selected set. This type of

https://cran.r-project.org/web/packages/rcc/index.html
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ranking scheme is discussed at greater length along with simu-
lation results in Section 3 of the Appendix.

We define the RCC at rank i of a set of confidence intervals
CI1 . . .CIp as

Rank Conditional Coveragei = P[θs(i) ∈ CIs(i)] (2)

=
p∑

j=1

P[θ j ∈ CIj|s(i) = j] · P[s(i) = j]. (3)

This quantifies how often the interval formed around the ith
ranked estimate contains its target parameter. This is an appeal-
ing criterion, since we have a strong interest in ensuring that
intervals around our most promising candidate features contain
their targets. Something to note here is that we are not condi-
tioning on which specific features achieve a given rank. Rather,
we are averaging over all features, weighted by their probabil-
ity of achieving that rank. While FCR summarizes the average
coverage of a confidence interval procedure applied to a set of
selected parameters in a single number, RCC gives a separate
estimate of coverage probability for each rank and is not directly
related to a selection procedure.

1.3. Implications of Controlling RCC

Intervals that control RCC do not provide guarantees for partic-
ular parameters. For example, suppose θ1 is of special interest. If
we use an RCC controlling method with level α, we cannot say
that, if the experiment were repeated many times, the propor-
tion of experiments for which θ1 is contained in CI1 is expected
to be 1 − α. Thus, if there is particular prior interest on one or
a few parameters, RCC is not the correct criterion to control.

Using RCC controlling intervals, we are guaranteed that the
expected proportion of experiments for which the top ranked
parameter is covered by its interval is 1 − α. A similar state-
ment could bemade for any rank.While this propertymay seem
less intuitive on its surface, it has important implications when
parameters are prioritized based on the ranks of their estimates.

For example, suppose that a researcher publishes the results
of many genome-wide association studies, each time reporting
the most significant effect size estimates. If these estimates were
paired with confidence intervals controlling the RCC at 90%,
the researcher could expect that 90% of the published intervals
for 1st ranked estimates (or 2nd, etc.), averaging over studies,
contain their parameters. Most follow-up studies are conducted
specifically for the most promising parameters, so this is pre-
cisely the type of guarantee needed to ensure these follow-up
studies are worthwhile.

This guarantee is different from the guarantee made by the
FCR.We find in simulations that FCR controlling methods typ-
ically do not control the RCC and that, using these, top ranked
parameters are less likely to be covered than lower ranked
parameters within the selected set. Conversely, for selection
rules that choose a fixed number of the top ranked parame-
ters, confidence intervals that control RCC for every rank also
control FCR. For selection rules that select a data-dependent
number of parameters, controlling the RCC does not necessar-
ily guarantee control of the FCR. Both Weinstein, Fithian, and

Benjamini (2013) and Reid, Taylor, and Tibshirani (2017) con-
sidered selection rules that choose either a fixed number of the
top ranked parameters or are based on a threshold. We find, in
simulations, that for threshold-based selection rules, the RCC
controlling intervals proposed in this article often control the
FCR despite the lack of guarantee for these cases. These results
and further discussion of the connection between FCR andRCC
are included in Section 1 of the Appendix.

An advantage of using the RCC over the FCR is that RCC
controlling confidence intervals can be divorced from the selec-
tion procedure. For example, if FCR controlling intervals are
published for the top 10 parameter estimates but we are only able
to follow up on the top 5 then we will need to recompute new,
wider intervals to guarantee coverage within the smaller set. By
contrast, the interpretation of RCC controlling intervals is inde-
pendent of the selection rule or the numbers of parameters are
selected.

1.4. Relationship of RCC to Empirical Bayes Approaches

The observation that motivates the RCC is that, in a study esti-
mating many parameters, the full set of estimates can provide
information about the true underlying parameter values. This is
the same idea that motivates empirical Bayes (EB) approaches
to simultaneous inference problems. In a Bayesian paradigm,
we are interested in estimating the posterior distributions of
θ1, . . . , θp, which, assuming conditional independence of the
estimates and using Bayes rule, we can express as

p(θ j|θ̂ j) ∝ p(θ̂ j|θ j)p(θ j).

The idea of EB approaches such as those of Efron (2008) and
Stephens (2017) is to assume a theoretical distribution for θ̂ j|θ j

(e.g., θ̂ j|θ j ∼ N(θ j, 1)) and use the large number of parame-
ter estimates to estimate the prior p(θ j). For example, in the
adaptive shrinkage (ash)method proposed by Stephens (2017),
p(θ j) is assumed to be unimodal and centered at zero and, in
one of several proposed variations, is estimated as a mixture of
normal distributions. Provided the EB modeling assumptions
hold, we can expect that, averaging over many realizations, the
1 − α EB credible intervals contain the true parameter 1 − α

percent of the time and are immune to selection bias. That is, in a
Bayesian systemwhere a single realization of an experiment also
includes resampling the parameter values, EB credible intervals
should control the RCC.

The bootstrapping approaches we describe in Section 2 differ
from EB methods in that they require fewer modeling assump-
tions and are derived from a frequentist perspective. We tend
to view the parameters θ j as fixed and use the large number of
estimates to learn about the distribution of the bias θ̂s(i) − θs(i).
This method requires no assumptions about the form of p(θ j).
In a nonparametric bootstrapping variation, we are also able to
avoid assumptions about the form of p(θ̂ j|θ j), provided we have
access to the individual level data used to produce the original
estimates. The flexibility of the nonparametric method comes
at the expense of increased computational effort. The para-
metric bootstrap can be fairly efficient and, in the example in
Section 1.5, is eight times faster than ash. The nonparametric
bootstrap can be quite costly since we must be willing to repeat
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Figure . Rank conditional coverage estimated using  simulations (top) and average interval widths (bottom) for the example described in Section . The top  ranks
are shown and both coverage and width are smoothed using loess. The four sets of true parameters are described in Section . The horizontal line in the top plots shows
the nominal level %. ash refers to the EBmethod of Stephens (). WFB and RTT refer to the methods of Weinstein, Fithian, and Benjamini () and Reid, Taylor, and
Tibshirani (), respectively.

the entire analysis hundreds of times. However, in cases in
which the parameter estimates are not independent or the the-
oretical distributions of test statistics are poor approximations,
the nonparametric bootstrap is the most appropriate choice.

1.5. Example

Consider estimates θ̂1, . . . , θ̂1000, where θ̂ j is drawn from an
N(θ j, 1) distribution. Suppose the estimates are then ranked
according to their absolute value and confidence intervals are
constructed. Repeating this experiment multiple times, we can
measure how often the parameter achieving rank i is covered,
giving an estimate of the RCC at rank i. Figure 1 shows the RCC
for the first 200 ranks and for several different configurations of
parameter values:

1. All parameters are equal to zero.
2. All parameters are small and nonzero: θ j is generated

from anN(0, 1) distribution but fixed for all simulations.
3. A few large nonzero parameters: θ j = 3 for j = 1 . . . 100

and θ j = 0 for j > 100.
4. A few small nonzero parameters: θ j drawn from an

N(0, 1) distribution but fixed over all simulations for
j = 1 . . . 100 and θ j = 0 for j > 100.

The standard marginal confidence intervals are CIi = θ̂ j ±
�−1(1 − α/2). In configuration 1, this interval has an RCC
of ∼ 0% for the 65 most extreme observations but an RCC
of ∼ 100% for statistics closer to the median giving an overall
average of 90% coverage.

We see a similar pattern in the intervals constructed using the
methods ofWeinstein, Fithian, and Benjamini (2013,WFB) and
Reid, Taylor, and Tibshirani (2017, RTT). Both provide intervals
only for a selected subset of parameters (we selected parameters
associated with the top 100 estimates). Both methods control
FCR but do so by under-covering parameters associated with

the most significant statistics and over-covering parameters
with more moderate statistics. In settings 2 and 3, the intervals
of Reid, Taylor, and Tibshirani (2017) have poor RCC for both
the most and least extreme parameters selected. The credible
intervals generated by the ash method of Stephens (2017)
control the RCC in settings 1, 2, and 4 and for most ranks in
setting 3. These credible intervals also sometimes achieve a very
small average interval width because ash attempts to shrink
parameter estimates to zero. If the posterior probability that the
parameter is equal to zero is larger than the desired level, the
resulting credible interval will simply be [0, 0].

Figure 1 also shows the results of the parametric bootstrap-
ping method described in Section 2. This method provides an
RCC larger than or equal to the nominal level for most ranks
and most settings. As with ash, the setting in which the boot-
strapping method performs the worst is setting 3. In most cases,
the bootstrap intervals are much shorter than the marginal and
FCR controlling intervals.

The fact that the bootstrapping method does not always
achieve exactly the nominal level of RCC is a result estimating
E[θ̂i]. If these values were known, we could produce an “ora-
cle” estimate which, with enough Monte Carlo samples, would
achieve exactly the desired RCC for all ranks. The oracle is
shown in Figure 1 and provides the motivation for bootstrap-
ping methods proposed in this article. A detailed walk-through
of the results in this section and code for replicating Figure 1 is
available in https://jean997.github.io/rccSims/compare_cis.html.

The rest of this article is organized as follows: In Section 2,
we introduce the oracle RCC controlling confidence intervals.
These are then extended to parametric and nonparametric
methods that use bootstrapping to estimate unknown parame-
ters. In Section 3, we explore the performance of these meth-
ods in two simulation studies designed to mimic common
high-dimensional analyses. We conclude with a discussion in
Section 4.

https://jean997.github.io/rccSims/compare_cis.html
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2. Parametric and Nonparametric Bootstrapping to
Build Confidence Intervals

2.1. Rank Conditional Confidence Intervals

First consider estimating a single parameter of a single distri-
bution θ = T (F ). Let δ = θ̂ − θ be the bias of the estimate and
H(x) = P[δ ≤ x] be the cdf of δ. If H is known, a pivotal exact
1 − α confidence interval can be constructed as(

θ̂ − H−1(1 − α/2), θ̂ − H−1(α/2)
)
. (4)

In the high-dimensional setting, we are attempting to esti-
mate p parameters θ j = Tj(F ). We can construct a rank condi-
tional analog of the classical pivotal interval in (4). Define θ̂s(i) as
in Section 1.2where s(i) gives the index of the ith ranked param-
eter estimate. We define the bias of the estimates at each rank

δ[i] = θ̂s(i) − θs(i), (5)

where the subscript [i] indicates ranked-based indexing. Let
H[i] = P[δ[i] ≤ x] be the cdf of δ[i]. Where H[i] are known, an
exact 1 − α confidence interval for θs(i) could be constructed as

CIexacts(i) =
(
θ̂(i) − H−1

[i] (1 − α/2), θ̂(i) − H−1
[i] (α/2)

)
. (6)

We note that the rank conditional intervals are not pivotal
because the distribution of δ[i] depends on θ1, . . . , θp. This
makes them more difficult to obtain when H[i] are unknown
but does not impact the coverage probability of (6).

Lemma 1. The intervals in (6) have exact 1 − α coverage:

P[θs(i) ∈ CIexacts(i) ] = 1 − α.

Proof. This proof is identical to the proof for the classical interval
in (4) given byWasserman (2005) among others. Let a = θ̂s(i) −
H−1

[i] (1 − α/2) and b = θ̂s(i) − H−1
[i] (α/2):

P[a ≤ θs(i) ≤ b] = P[θ̂s(i) − b ≤ δ[i] ≤ θ̂s(i) − a]

= H[i](θ̂s(i) − a) − H[i](θ̂s(i) − b)

= H[i]

(
H−1

[i] (1 − α/2)
)

− H[i]

(
H−1

[i] (α/2)
)

= 1 − α

2
− α

2
= 1 − α.

�

2.2. Generating Oracle Intervals withMonte Carlo
Sampling

Construction of the intervals in (6) requires knowledge of the
quantiles of the cdfs H[i], but working directly with H[i] may be
difficult. If, instead, we can easily sample from the joint distri-
bution G of θ̂ = (θ̂1, . . . , θ̂p)

�, then the quantiles of H[i] can be
computed via Monte Carlo. We now describe this oracle Monte
Carlo procedure which is detailed in algorithm 1 and illustrated
in Figure 2.

First, we drawK independent p-vectorsϑ1 . . . ϑK fromG. Let
sk be the ranking permutation function for ϑk and ϑk,sk(i) be the
ith ranked element of ϑk. Define the observed bias in sample k

Figure . Generating oracle confidence intervals using algorithm  for rank i = 1 in (a) and i = 100 in (b). Left panels: A smoothed histogram of the true parameters is
shown in the background. Smoothed histograms of three sets of Monte Carlo replicates from G are overlayed. Solid vertical lines mark the locations of the largest (a) and
th largest (b) element of the Monte Carlo sample. Dashed vertical lines mark the corresponding true parameter value. The distance between these lines is the bias,
δk,[i] . Middle: A smoothed histogram of biases from  Monte Carlo samples with . and . quantiles marked by vertical dashed lines. Right: The oracle interval is

constructed by pivoting the quantiles in the middle panel around the observed test statistic θ̂s(i), marked by a solid vertical line. The horizontal lines extending from θ̂s(i)
are the same length as the corresponding lines in the middle panel. The dashed vertical line shows the location of the true parameter. The naive interval is shown for
comparison. The vertical axis is meaningless.
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at rank i as

δ̃k,[i] = ϑk,sk(i) − θsk(i). (7)

The left panels of Figure 2(a) and 2(b) show smoothed his-
tograms of the true parameter values and the wider distribu-
tion of samples fromG. The middle panels of these figures show
smoothed histograms of δ̃k,[i] for i = 1 and 100, respectively,
using K = 500 Monte Carlo samples.

After computing the bias at each rank for each sample, we
use the sample quantiles of {δ̃1,[i] . . . δ̃K,[i]} to estimate the quan-
tiles of H[i], for i = 1, . . . , p. We denote these sample quantiles
as H̃−1

[i] (·). The 0.05 and 0.95 quantiles of these distributions are
shown as dashed vertical lines in themiddle panels of Figure 2(a)
and 2(b).

Substituting these estimates into the interval in (6) gives the
oracle confidence interval

CIoracles(i) =
(
θ̂s(i) − H̃−1

[i] (1 − α/2), θ̂s(i) − H̃−1
[i] (α/2)

)
. (8)

This procedure is illustrated in the right panels of Figure 2(a)
and 2(b). For both of the ranks shown, the oracle Monte Carlo
intervals are shorter than the marginal interval and contain the
true parameter value.

These intervals are called oracle confidence intervals because
they use knowledge of G and θ = (θ1, . . . , θp). Under these cir-
cumstances, H̃−1

[i] (x) will converge to H−1
[i] (x) as the number of

Monte Carlo samples increases, so using (8), we can achieve the
correct 1 − α confidence level (within any ε tolerance). This can
be seen in Figure 1 where the oracle intervals have very close to
the target 90%RCC at all ranks and are shorter than othermeth-
ods. The following sections describe bootstrapping methods for
estimating H−1

[i] when G and θ are unknown.

Algorithm 1 Generating oracle intervals
G and θ1, . . . , θp are known.
1. For k in 1 . . .K:

a. Sample ϑk = (ϑk,1 . . . ϑk,p) from G.
b. Calculate the bias at each rank δ̃k,[i] as in (7).

2. For i in 1 . . . p
a. Calculate empirical quantiles H̃−1

[i] (x) of {δ̃1,[i] . . . δ̃K,[i]}
b. Generate CIoracles(i) as in (6)

The intervals, CIoracles(i) , in (8) do not necessarily contain θ̂s(i).
This is particularly true if the point-estimates, θ̂s(i), have not
been adjusted for multiplicity/selection bias (e.g., if each θ̂s(i)
is a maximum likelihood estimate). In Figure 2(a), both the
0.05 and 0.95 quantiles of the observed bias are positive so the
confidence interval lies completely below θ̂s(1). A more natu-
ral point estimate to pair with this confidence interval is the
debiased estimate proposed by Simon and Simon (2013), θ̂s(i) −
1
K

∑K
k=1 δ̃k,[i], which will generally lie within the confidence

interval.
The following bootstrap methods for confidence interval

construction are extensions of point estimation methods pro-
posed by Simon and Simon (2013) and Tan, Simon, and Wit-
ten (2014). These proposals estimate the mean of δ[i] which
can be used to debias point estimates of θs(i). We consider two
bootstrapping strategies: a parametric bootstrap, useful when

the distribution and covariance of the parameter estimates are
known or can be approximated well, and a nonparametric boot-
strap which is more widely applicable but is also more compu-
tationally costly. Both of these are general strategies, where the
specifics of the algorithm may vary depending on the specific
application.

A related bootstrapping procedure has been proposed by
Claggett, Xie, and Tian (2014) for different purposes. These
authors are interested in constructing confidence intervals for
the quantiles, or ranked elements of θ. By contrast, we are inter-
ested in estimating confidence intervals for the parameters cor-
responding to the ranked elements of θ̂.

2.3. Parametric Bootstrap

The parametric bootstrap parallels the Monte Carlo algorithm
in Algorithm 1, replacing G and θ with estimates based on the
data. We assume that G is a member of a parametric family of
distributions and estimate its parameters. In principal, we could
use any family of distributions, but in this discussion, we will
assume that θ̂ j ∼ N(θ j, σ

2
j ) where σ 2

j is either known or can be
estimated and θ̂ j are independent given θ. This type of paramet-
ric bootstrap is best suited for scenarios in which the estima-
tor has an asymptotically normal distribution with known vari-
ance such as linear regression. We estimate Ĝ by replacing θ j

with an estimate such as θ̂ j itself or debiased estimates of Simon
and Simon (2013) or Tan, Simon, and Witten (2014). The latter
choices will involve two stages of bootstrapping, one to generate
a debiasedmean estimate and the second to generate confidence
intervals (see Section 2 of the Appendix).

The quantiles estimated through Monte Carlo simulation in
(6) are replaced by bootstrapped quantiles Ĥ−1

[i] (x) obtained by
sampling p-vectors from Ĝ rather than from G. This gives the
bootstrap intervals

CIboots(i) =
(
θ̂s(i) − Ĥ−1

[i] (1 − α/2), θ̂s(i) − Ĥ−1
[i] (α/2)

)
. (9)

This procedure is described in Algorithm 2 for the case when
G = N(θ, I) where I is the p× p identity matrix. Many varia-
tions on this procedure are possible. For example, it may be eas-
ier to specify a distribution for a transformation of θ j.

This method provides an RCC closer to the nominal level
when Ĝ is closer to G. This means that, in the case of asymp-
totically normal test statistics, we achieve better performance
using better estimates of θ, such as those proposed by Simon
and Simon (2013). Algorithm 1 in Section 2 of the Appendix
shows the additional steps necessary when using this debiased
mean estimate. If the ranking scheme is based on the absolute
value of the parameter estimates (e.g., using the magnitude of a
t-statistic), it is necessary to reflect the interval across zero for
negative parameter estimates. Algorithm 2 in Section 2 of the
Appendix gives the parametric bootstrap procedure for abso-
lute value-based rankings. Algorithm 2 and the two variations
described in theAppendix are implemented in thepar_bs_ci
function of the R package rcc.
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2.4. Nonparametric Bootstrap

The parametric bootstrap can be appliedwhenG is well approxi-
mated by amember of a parametric family. It is particularly con-
venient for statistics which are asymptotically normal and either
independent or have a covariance that can be estimated well.
Many high-dimensional problems possess complex dependence
structures which are not easy to estimate. Furthermore, not all
estimators have known asymptotic distributions. In these cases,
the parametric bootstrap, the selection adjusted FCR control-
ling methods, and EB methods that assume conditional inde-
pendence between estimates are all unsuitable. It is not possible
to estimate a general G without making any structural assump-
tions about the true parameters. However, it is possible to gen-
erate bootstrap samples nonparametrically if individual data are
available.
Algorithm 2 Simple parametric bootstrap for asymptotically
normal estimates
1. For k in 1 . . .K:

a. Sample ϑk,i from an N(θ̂i, 1) distributionfor i in 1 . . . p.
b. Calculate the bias at each rank δ̂k,[i] as

δ̂k,[i] = ϑk,sk(i) − θ̂sk(i)

2. For i in 1 . . . p:
a. Calculate empirical quantiles Ĥ−1

[i] (x) of {δ̂1,[i] . . . δ̂K,[i]}
b. Generate CIboots(i) as in (9)

The nonparametric bootstrap is based on sampling from the
data used to compute θ̂ and computing new estimates using the
resampled data. This is implicitly sampling from a distribution Ĝ
without requiring an analytical form.We assume the data consist
of n independent data vectors y1, . . . , yn. These may be vectors
of genotypes, biometric, or image data for n individuals. They
may be a mix of data types and include covariates. We assume
only that there is a procedure which takes y1, . . . , yn as inputs
and generates estimates θ̂ and statistics indicating the signifi-
cance of each estimate. A bootstrap p-vector can be generated
by sampling n data vectors from y1, . . . , yn with replacement
and applying the original estimation procedure. From this point
confidence intervals may be constructed identically to the para-
metric case.

More formally, if y1, . . . , yn are iid draws from 	, and θ̂ ≡
θ̂(y1, . . . , yn) is a function of those observations, then G ≡
G(	) is directly a function of 	. To estimate G, we can use
the estimate induced by 	n, the empirical distribution of the yi:
Ĝemp ≡ G(	n). From here we can estimate the quantiles in (6)
by Ĥ−1

emp[i](x) obtained by sampling repeatedly from Ĝemp. This
leads us to the nonparametric bootstrap intervals:

CInp-boots(i) =
(
θ̂s(i) − Ĥ−1

emp[i](1 − α/2), θ̂s(i) − Ĥ−1
emp[i](α/2)

)
.

(10)

The specifics of this procedure are shown in Algorithm 3 and
implemented in thenonpar_bs_ci function of the R package
rcc. Nonparametric bootstrapping can potentially be very time
consuming. If the original analysis was computationally expen-
sive it may be infeasible to repeat it many times to obtain confi-
dence intervals.

Algorithm 3 Nonparametric bootstrap
1. For k in 1 . . .K:

a. Sample yk,1, . . . yk,n with replacement from {y1, . . . yn}
b. Using the sampled data, calculate estimates

ϑk = (ϑk,1 . . . ϑk,p).
c. Estimate the bias at each rank δ̂k,[i] as

δ̂k,[i] = ϑk,sk(i) − θ̂sk(i)

2. For i in 1 . . . p:
a. Calculate empirical quantiles Ĥ−1

emp[i](x) of {δ̂1,[i] . . . δK,[i]}
b. Generate CInp-boots(i) as in (10)

3. Simulations

3.1. Linear Regressionwith Correlated Features

In this set of simulations, we explore how correlation among
parameter estimates effects the rank conditional cover-
age rates of different methods of confidence interval con-
struction. Code replicating these results can be found at
https://jean997.github.io/rccSims/linreg_sims.html.

We consider a common analysis procedure used in genetic
and genomic studies. In these studies, researchers measure
far more features (such as gene expression levels) than there
are samples and focus on estimating the marginal association
between each feature individually and an outcome.We consider
a setting in which the features occur in correlated blocks leading
to correlated parameter estimates.

In each simulation, we simulate 1000 normally distributed
features for 100 samples. Let xi, j denote the value of the jth fea-
ture for the ith individual and xi = (xi,1, . . . , xi,1000)T . The fea-
tures are simulated as

xi ∼ N1000(0, 
),

where the covariancematrix,
, is block diagonal with 100 10 ×
10 blocks. The diagonal elements of each block are equal to 1
and the off diagonal elements are equal to ρ. The outcome for
individual i is simulated as

yi = xiβ + εi εi ∼ N(0, 1),

where elements of β, the vector of conditional effect sizes, are
equal to 0 at all but 100 elements. In each block the effect size
for the fifth feature is drawn from an N(0, 1) distribution while
the effects for the other features are 0. These effects are fixed over
all simulations.

In this analysis, we estimate the marginal rather than condi-
tional effect sizes, β(marg) = 
β. We estimate β

(marg)
j through a

univariate linear regression of x· j = (x1, j, . . . , xn, j)T on y. This
is a standard analysis strategy for many genomic studies such as
genome-wide association studies and gene expression studies.

We consider four levels of correlation between the features
by setting ρ equal to 0, 0.3, 0.8, and −0.1. Rank conditional
coverage and interval widths averaged over 400 simulations for
each scenario are shown in Figure 3. In these results, param-
eter ranking is based on the absolute value of the t-statistic
β̂

(marg)
j /ŝe(β̂(marg)

j ). In Appendix Section 3, we consider ranking

https://jean997.github.io/rccSims/linreg_sims.html
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Figure . Simulation results for Section . Rank conditional coverage (top) and interval widths (bottom) are shown for the top % of parameters averaged over 
simulations. Parameters are ranked by absolute value of the test statistic. Coverage rates and widths are smoothed using loess. In the top panel, a horizontal line shows
the nominal level %. ash refers to the EBmethod of Stephens (). WFB and RTT refer to the methods of Weinstein, Fithian, and Benjamini () and Reid, Taylor, and
Tibshirani (), respectively.

the parameters by first selecting the parameterwith themost sig-
nificant estimate in each block and then ranking only these 100
selected parameters based on the absolute value of the t-statistic.

We find that both the parametric and nonparametric confi-
dence intervals perform well in all four settings and are quite
similar, even though the parametric bootstrap assumes indepen-
dence between the estimates. None of the other methods pro-
vides an RCC close to the nominal level except for ash in the
highest correlation scenario. The ash method does poorly in
the other scenarios (while it did quite well in the example in
Section 1.5) because themarginal effects are not sparse and ash
attempts to shrink parameters to zero. We found similar results
repeating these simulations with block sizes of 2, 20, 100, and
using a mixture of block sizes (see Appendix Section 4).

3.2. Treatment Effects in Nested Subgroups

In Section 3.1, we found that the parametric bootstrap per-
formed well even when the assumption of independence
between estimates was violated. Here, we provide an example of
how the parametric bootstrap can fail when estimates are very
highly correlated. Code replicating these results can be found at
https://jean997.github.io/rccSims/biomarker_sims.html.

This example is motivated by the use of biomarkers in clin-
ical trials. Suppose we have conducted a clinical trial in which
participants are randomized into two groups. For participant
i, we record the treatment group, trti ∈ {0, 1}, an outcome yi
and the value of a biomarker, wi. We expect that the treatment
will have a greater effect in individuals with higher values of the
biomarker but do not know the exact relationship between the
biomarker and the treatment effect. In an exploratory analysis,
we define a series of cut-points c1, . . . , cp. For each cut-point, we
estimate the difference in treatment effects for participants with

biomarker measurements above and below the cut-point:

β j = (
E[yi|trti = 1,wi > c j] − E[yi|trti = 0,wi > c j]

)
− (

E[yi|trti = 1,wi ≤ c j] − E[yi|trti = 0,wi ≤ c j]
)
.

We estimate β j as the OLS estimate fitting the regression

yi = β0 + β1trti + β2, j1wi>c j + β jtrti ∗ 1wi>c j + εi,

where 1wi>c j is an indicator that w j > c j. We then rank these
estimates by the absolute value of their t-statistics to select a
cut-point that gives the most significant difference in treatment
effect between groups. This cut-point might be used to design
future clinical trials.

In each simulation, we generate data for 200 study partici-
pants, 100 randomized to the treatment arm, and 100 random-
ized to the control arm. We simulate the value of the biomarker
as uniformly distributed between 0 and 1. The true relationship
between the biomarker, the treatment, and the outcome given
by

E[yi|trti,wi] =
{
0 wi < 0.5(
wi − 1

2

) · trti wi ≥ 0.5 .

The observed outcome for individual i (i ∈ 1, . . . , 200) is yi =
E[yi|wi, trti] + εi where εi ∼ N(0, 0.25).

We chose 100 cut-points evenly spaced between 0.1 and 0.9.
Rank conditional coverage and interval width averaged over
400 simulations are shown in Figure 4. In this scenario, param-
eter estimates are very highly correlated. This results in very
poor performance for the parametric bootstrap which assumes
independence between estimates. Interestingly, the standard
marginal intervals do well despite making the same assumption.
The nonparametric bootstrap also controls the RCC though it
has slight under-coverage for the least significant parameters.
Unlike themarginal intervals, the nonparametric bootstrap con-
trols the RCC by modeling the correlation structure between

https://jean997.github.io/rccSims/biomarker_sims.html
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Figure . Simulation results for Section . Rank conditional coverage (left) and interval widths (right) are shown for the top % of parameters averaged over  simula-
tions. Parameters are ranked by the absolute value of the test statistic. Coverage rates and widths are smoothed using loess. In the left-hand panel, a horizontal line shows
the nominal level %. ash refers to the EBmethod of Stephens (). WFB and RTT refer to the methods of Weinstein, Fithian, and Benjamini () and Reid, Taylor, and
Tibshirani (), respectively.

parameter estimates and also performs well in the simulations
in Section 3.1 making it a more reliable choice.

4. Discussion

Interval estimation when the number of parameters is large is a
challenging problem often ignored in large-scale studies. Out of
caution, these studies are frequently limited to hypothesis testing
but this limitation is unnecessary inmany cases.We have shown
that the full set of parameter estimates contains information and
can be used to correct bias and generate useful confidence inter-
vals. We have also introduced a more granular, informative con-
cept of coverage which can be applied to confidence intervals
constructed for numerous parameters.

Rank conditional coverage is an important criterion to
consider in evaluating confidence intervals for large param-
eter sets. As a finer grained criterion, it reveals problems
that are ignored by the FCR. In many cases, using an FCR
controlling procedure after selecting top parameter-estimates
results in very low coverage probabilities for the very largest
parameters.

In our simulations, we found that rank conditional cover-
age is a more difficult criterion to control than the false cover-
age statement rate of Benjamini and Yekutieli (2005). The two
proposed bootstrapping methods almost always outperformed
other methods and produced smaller intervals than all methods
except the ashmethod of Stephens (2017).

SupplementaryMaterials

Appendix: Contains a discussion of the connection between the
FCR and RCC, two variations of Algorithm 2, and additional
simulation results referenced in the text.

R-package rcc: R-package implementing Algorithms 1, 2, 3,
and 3. (GNU zipped tar file)

R-package rccSims: R-package replicating the simulations
shown in Sections 1.5 and 3. (GNU zipped tar file)
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