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A. Trend Filtering

Dk+1,s in (2.2) is the discrete (k+ 1)st derivative operator for sites s = (s1, . . . , sp). This matrix

can be defined recursively. For k = 0,

D1,s ≡ D1 =


−1 1 0 · · · 0 0
0 −1 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · −1 1

 , (A.1)

a (p − 1) × p matrix that does not actually depend on s. This corresponds exactly to the fused

lasso (Tibshirani and others, 2005). For k > 1,

Dk+1,s = D1 · diag

(
k

sk+1 − s1
. . .

k

sp − sp−k

)
·Dk,s ≡ D1D̃k,s (A.2)

as described in Ramdas and Tibshirani (2015) and Tibshirani (2014). Equation A.2 admits a

slight abuse of notation: D1 in (A.2) is the (p− k − 1)× (p− k)-dimensional version of (A.1).
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B. Details of Algorithm 1

B.1 Step 3(iii)

When M = 2, the β1 and β2 updates have a simple closed form, given in Danaher and others

(2014):

η1 =sign (z1 − z2) ·max

(∣∣∣∣z1 − z2
2

∣∣∣∣− γ

ρβ
, 0

)
, η2 =

z1 + z2
2

,

β1 =η1 + η2, β2 = η2 − η1,

where zm = θm + u
(β)
m . Here, the sign and max operators are applied element-wise.

B.2 Step Size and Stopping Criteria

Step size update rules and stopping criteria are taken from Boyd and others (2010). The rules

are based on primal and dual residuals, defined as

r
(αm)
primal = D̃k,sθm −αm, r

(β)
primal = β − θ,

r
(αm)
dual = ρoldαm

[
D̃k,s

]> (
αm −αoldm

)
, r

(β)
dual = ρoldβ

(
β − βold

)
,

where αold, βold, and ρold are the α, β, and ρ values from the previous iteration of the algorithm.

For the first 500 iterations of the ADMM algorithm, we update the step sizes as

ρ∗ =


τincrρ

old
∗

∥∥∥r∗primal

∥∥∥
2
> µ ‖r∗dual‖2

ρold∗ /τdecr ‖r∗dual‖2 > µ
∥∥∥r∗primal

∥∥∥
2

ρold∗ otherwise

,

where ∗ indicates the m+1 indices α1, . . . , αM and β; ρold∗ indicates the step size at the previous

iteration; and τincr, τdecr and µ are parameters which we set to 2, 2 and 10 as suggested by

Boyd and others (2010). We initialize ρβ = 1 and ραm = λ
(

max({sj})−min({sj})
p

)k−1
based on a

suggestion in Ramdas and Tibshirani (2015).

We use the stopping criteria discussed in Section 3.3.1 of Boyd and others (2010), terminating
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when

‖rprimal‖2 6 εabs
√
M(2p− k) + εrel max

√∑
m

[∥∥∥D̃k,sθm

∥∥∥2
2

+ ‖θm‖22

]
,

√∑
m

[
‖αm‖22 + ‖βm‖

2
2

] ,

‖rdual‖2 6 εabs
√
M(2p− k + 1) + εrel

(√∥∥∥D̃k,su
(α)
m

∥∥∥2
2

+
∥∥∥u(β)

m

∥∥∥2
2

)
,

where rprimal =
(
r
(α1)
primal, . . . , r

(αM)
primal, r

(β)
primal

)
, rdual =

(
r
(α1)
dual , . . . , r

(αM)
dual , r

(β)
dual

)
, and εabs and εrel

are parameters which, by default, we set to 10−4 and 10−8.

C. Cross-Validation of γ

The JADE optimization problem given in (2.4) has an equivalent constrained form,

minimize
θ1,...,θM

M∑
m=1

Nm
2
‖Am(ȳm − θm)‖22 + λ

M∑
m=1

∥∥Dk+1,sθm
∥∥
1

(C.3)

subject to
∑
m<m′

‖θm − θm′‖1 6 Cγ .

For each γ, there is a corresponding Cγ such that (2.4) and (C.3) have identical solutions. The

mapping from γ to Cγ is quite complicated, and depends on the data. In practice, we have seen

that solutions to (C.3) for a fixed value of Cγ are more similar across cross-validation folds than

solutions to (2.4) for a fixed γ, so we choose to cross-validate based on Cγ rather than γ.

Unfortunately, it is difficult to solve (C.3) for a specified value of Cγ . Instead, we choose a grid

of Cγ values, and in each fold of our cross-validation we find a grid of γ values that approximately

covers those Cγ values. We then linearly interpolate to estimate test error for our specified grid

of Cγ values.
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D. Details of Figures 3, 4, and 5 in Section 4 of Main Manuscript

D.1 Calculation of curves

For the t-statistic methods, we allowed the significance threshold (the absolute value threshold

at which a statistic is declared significant) to vary between 0 and the value of the largest statistic

observed. For a given threshold value, and for a given simulated data set, we computed the true

and false positive rates (TPR and FPR) using information about whether each site is part of a

differential region. For a given simulated data set, we then linearly interpolated the corresponding

TPR and FPR values. Finally, for each FPR value along a fine grid, we averaged the corresponding

TPR values across the simulated data sets, in order to obtain the curves displayed in the figure.

For JADE, we varied the value of γ in (2.4). For each value of γ, and for a given simulated data

set, we computed the TPR and the FPR of the corresponding JADE fit. For a given simulated

data set, we then linearly interpolated the corresponding TPR and FPR values. Finally, for each

FPR value along a fine grid, we averaged the corresponding TPR values across the simulated

data sets, in order to obtain the curve displayed in the figure.

D.2 Calculation of colored points

For the t-statistic methods, for each simulated data set, we calculated the value of the significance

threshold that resulted in an estimated false discovery rate of 10%, and calculated the TPR and

FPR corresponding to this threshold. We then averaged these TPRs and FPRs over the simulated

data sets, and displayed the resulting average FPR and average TPR using a colored point.

For JADE, for each simulated data set, we used cross-validation to select a value for γ, and

calculated the corresponding TPR and FPR. We then averaged these TPRs and FPRs over the

simulated data sets, and displayed the resulting average TPR and average FPR using a colored

point.



Detection and estimation of associations with genomic phenotypes 5

E. Additional Simulation Results

E.1 Variable Sample Size

In Section 4 of the main paper, we present simulations using M = 2 groups of size n1 = n2 = 10.

In practice, due to time and cost constraints, experiments tend to have small sample sizes. For

example, the ENCODE project provides DNA methylation and more for a large number of cell

types, with only one biological replicate for most cell types.

In this section, we explore the effect of sample size in the context of the normal simulations

described in Section 4.1.

We considered two simulation settings:

Setting (i): We generated data as in (4.7) of the main manuscript, with εimj ∼ N(0, 0.4·nm).

Setting (ii): We generated data according to (4.7) and (4.8) of the main manuscript, with

σ2 and σ2
re chosen so that σ2 + σ2

re = 0.5 · nm and σ2
re/(σ

2 + σ2
re) = 0.2.

In each simulation setting, we generated data with n1 = n2 equal to 3, 5, 10, 20, and 50. Results

are shown in Supplementary Figure 1. Using a larger sample size has little effect on JADE, but

results in slightly higher power for the t-test methods.

E.2 Region-Level Results

In Section 4 of the main paper, we investigate the site-level accuracy of JADE and the other

methods. In this section, we instead perform a region-level analysis.

We treat consecutive sites within a differential region detected by JADE as a single discovery.

For the t-statistic approaches, for a given threshold value, we define a discovery to be any string

of three or more consecutive sites for which the t-statistic exceeds that threshold in absolute

value. Discoveries separated by only one non-significant site are merged.

We define a true positive to be any discovery that overlaps a signal region, and a false positive
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Setting (i)

Setting (ii)

Fig. 1: Simulation study described in Section E.1. Curves display the average TPR for a fixed
FPR, averaged over 100 simulations. The vertical bars indicate one sample standard deviation.
Points indicate average TPR and FPR achieved for JADE with the tuning parameter selected by
cross-validation, and for the t-test approaches with an FDR threshold of 10%. Methods shown
are JADE ( , ), per-site t-tests applied to the raw data ( , ), and per-site t-tests after
smoothing the raw data using splines ( , ) and local likelihood ( , ).

to be any discovery that does not overlap a signal region. The TPR is defined to be the proportion

of signal regions that overlap a discovery. This means that a method that makes multiple disjoint

discoveries within one large signal region will be assigned the same TPR as a method that make

a single discovery that exactly overlaps the signal region.

In this region-level analysis, it is hard to define the FPR, since there is no natural partition of

non-signal sites into regions. Therefore, instead of considering the FPR, we simply consider the

number of false positives.

These definitions of TPR and false positives are sensible when the discoveries span small

regions. If, however, a method produces a few discoveries that span long regions containing most

of the sites, then the method will have a high TPR and few false positives but qualitatively
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undesirable results. To avoid this problem, we limit our analysis to a range of thresholds for the

t-statistic methods and γ values for JADE that result in discoveries that span less than 50%

of the total region. Furthermore, we note that both site-level and region-level results should be

considered when summarizing a method’s accuracy.

Region-level summaries for the simulations presented in Figures 3, 4, 5 of the main text

are shown in Supplementary Figures 2, 3, and 4. Additional details of how these figures were

generated are provided in Section D, with FPR replaced with the number of false positives. The

figures indicate that all methods perform very well in terms of region-level metrics, with the

exception of methylKit in the binomial simulations shown in Supplementary Figure 4.

In order to see more differences between the methods, we devised a more challenging setting,

in which the data are generated using the mean profiles in Supplementary Figure 5 rather than

in Figure 2 of the main text. We generated data under the auto-regressive model of Section 4.1.1,

with p = 500, σ = 2, and ρ ∈ {0, 0.2, 0.4}. The results are shown in Supplementary Figure 6. For

a given number of false positives, JADE has a slightly higher TPR than competing methods.

F. Read Tiling in Binomial Simulations

We now describe the strategy used to generate nimj in Section 4.2. In order to mimic the variable

read depth observed in methylation sequencing data, reads at each position are assigned by

layering contiguous tiles. A schematic of 30 tiles is shown in Supplementary Figure 7. A tile

is placed by sampling a length from an Exponential(30) distribution, and a start point from a

Uniform(-30, 300) distribution. Portions of tiles extending above 300 or below 1 are discarded. For

each observation, 110 tiles are placed initially, so that in expectation there are 10 reads per site.

For each site that has zero reads at the end of this procedure, one additional tile is drawn using

the sampling scheme above, conditional on covering the zero-read site. This procedure guarantees

that every site is covered, while keeping the expected coverage of each site close to 10 reads.
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Fig. 2: Performance of JADE and competing methods in the normal auto-regressive simulations
presented in Figure 3 of the main text. Here, performance is quantified using a region-level
analysis, described in Section E.2. Curves display the average region-level TPR, for a fixed number
of false positives. The vertical bars indicate one sample standard deviation. Methods shown are
JADE ( ), per-site t-tests applied to the raw data ( ), and per-site t-tests after smoothing
the raw data using splines ( ) and local likelihood ( ).
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Fig. 3: Performance of JADE and competing methods in the normal random effects simulations
presented in Figure 4 of the main text. Here, performance is quantified using a region-level
analysis, described in Section E.2. Details are as in Supplementary Figure 2.

G. Additional Results for Methylation Analysis of Section 5

G.1 Loss-of-Methylation Over the Course of Muscle Cell Development

It is well-established in the literature that as myoblasts develop into mature skeletal muscles, a

loss of methylation tends to occur (Hupkes and others, 2011; Segalés and others, 2014; Palacios
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Fig. 4: Performance of JADE and competing methods in the binomial simulations presented in
Figure 5 of the main text. Here, performance is quantified using a region-level analysis, described
in Section E.2. Methods shown are JADE ( ), methylKit ( ), and BSmooth ( ). Additional
details are as in Supplementary Figure 2.

and Puri, 2006; Carrió and others, 2015). Here we assess whether the DMRs detected by JADE

in Section 5 are consistent with this expectation.

Each DMR detected by JADE induces some ordering in the estimated mean profiles. For
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Fig. 5: Mean profiles for more challenging simulation setting described in Section E.2.

Fig. 6: Performance of JADE and competing methods in the more challenging simulation setting
described in Section E.2, with mean profiles given in Supplementary Figure 5. Additional details
are as in Supplementary Figure 2.

instance, the differential region shown on the left-hand side of Figure 6b in the main text has

the ordering (Mature<Myoblast<Myotube), and the differential region shown on the right-hand

side of Figure 6b in the main text has the ordering (Mature<Myoblast=Myotube).

We will refer to a DMR with the induced ordering (Mature6Myotube6Myoblast) as a “loss-of-

methylation” DMR, as such a DMR displays a monotone decrease in methylation over the course

of development. We will refer to a DMR with the induced ordering (Mature>Myotube>Myoblast)
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Fig. 7: Read tiling for binomial simulations in Section 4.2. The tiling procedure is described in
Section F. Top panel: Read tiles. Bottom Panel: Total reads.

as a “gain-of-methylation” DMR. Some DMRs display neither loss-of-methylation nor gain-of-

methylation over the course of development. For instance, the DMR shown on the left-hand side

of Figure 6b of the main text is disordered with respect to developmental stage.

The orderings induced by the DMRs detected by JADE are summarized in Supplementary
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Figure 8. Of the base-pairs that belong to a DMR, 35.9% fall within a loss-of-methylation DMR,

21.9% fall within a gain-of-methylation DMR, and the remaining 42.2% are disordered with

respect to developmental stage. Of the DMRs that are disordered with respect to developmental

stage, 94% have the ordering (Mature<Myoblast<Myotube) or (Myotube<Myoblast<Mature),

and many of these display very small differences between the myoblast and myotube profiles, and

much larger differences between the mature cell profiles and the other two. This makes them very

similar to the classes (Mature<Myoblast=Myotube) and (Myotube=Myoblast<Mature), which

are consistent with loss-of-methylation and gain-of-methylation, respectively.

Fig. 8: Results from the methylation data analysis, as described in Section G.1. Each x-axis label
indicates an ordering of the mean methylation profiles. For instance, S=T<B indicates the set
of DMR sub-regions for which the estimated mean mature skeletal muscle profile (S) equals the
estimated mean myotube profile (T), and is less than the estimated mean myoblast profile (B).
For DMR sub-regions in which the estimated mean profiles for two tissue types intersect, the
order is determined based on the average difference between profiles. The y-axis represents the
total base-pairs in the DMR sub-regions with the specified ordering. Red bars are consistent with
a decrease in methylation over the course of development, and bright blue bars are consistent
with an increase in methylation over development. The proportion of total base-pairs in DMRs
accounted for by each category is indicated.

G.2 Enrichment Analysis of DMRs

In order to assess the quality of the DMRs detected by JADE, in Section 5.2.2, we test the

hypothesis that these DMRs overlap genetic features no more than expected due to chance. The
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Genomic Association Test (GAT; Heger and others, 2013) provides one approach for testing

this hypothesis. However, this approach does not account for the possibility that the JADE

output may depend on aspects of the data such as measurement density, read depth, or average

methylation, which might also be correlated with genetic features of interest.

Instead, we conducted three “null” analyses, one for each cell type. In each of these analyses,

we applied JADE to the data from a single cell type, treating each technical replicate as a

separate group. The segments detected in these null analyses can be used to estimate the amount

of overlap with a genetic feature that one might expect due to chance. We combined the three sets

of “null” DMRs detected across the three cell types, and used a Fisher’s exact test to compare

the proportion of detected DMRs overlapping each genetic feature to the proportion observed in

the null analyses. These results are shown in Table 1 of the main text.

In addition, we tested whether each genetic feature has a tendency to overlap gain-of-methylation

DMR sub-regions, or a tendency to overlap loss-of-methylation DMR sub-regions. (Recall that

loss-of-methylation and gain-of-methylation DMR sub-regions are defined in Section Section G.1

of the SM.) Table 1 of the SM displays the results of this analysis. As discussed in the main text,

we found that the rate of overlap with CpG islands is higher in loss-of-methylation than in gain-

of-methylation DMR sub-regions and that the rates of overlap with both DNase-I hypersensitive

sites and H3K27ac modifications are higher in gain-of-methylation than in loss-of-methylation

DMR sub-regions.
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Table 1: Overlap between gain-of-methylation and loss-of-methylation DMR sub-regions and ge-
netic features, for the methylation data analysis described in Section 5.2.2 of the main text.
‘Total’, ‘Loss’, and ‘Gain’ are the number of DMR sub-regions, loss-of-methylation DMR sub-
regions, and gain-of-methylation DMR sub-regions that overlap each genetic feature. ‘P-value’ is
the p-value based on a Fisher’s exact test comparing whether the proportion of loss-of-methylation
DMRs overlapping a genetic feature equals the proportion of gain-of-methylation DMRs overlap-
ping the genetic feature. Note that the counts in the ‘Total’ column differ from those in Table 1 of
the main text because here we are considering sub-regions rather than full DMRs. Furthermore,
the ‘Loss’ and ‘Gain’ columns do not sum to equal the ‘Total’ column because only 58% of DMR
sub-regions can be characterized as either loss-of-methylation or gain-of-methylation.

Genetic Feature Total (N=380) Loss (N=176) Gain (N=46) P-Value
CpG Islands 201 (52.9%) 100 (56.8%) 12 (26.1%) 2.3 · 10−4

CpG Island Shores 89 (23.4%) 36 (20.5%) 14 (30.4%) 0.17
Transcription Start Sites 186 (48.9%) 82 (46.6%) 23 (50%) 0.74
TF Binding Sites 24 (6.3%) 13 (7.4%) 6 (13%) 0.24
DNase I HS Sites 120 (31.6%) 52 (29.5%) 22 (47.8%) 0.022
H3K27ac Modifications 43 (11.3%) 18 (10.2%) 10 (21.7%) 0.046
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