Mendelian Randomization Accounting for Horizontal and Correlated Pleiotropy Using Genome-Wide Summary Statistics

Jean Morrison, Nicholas Knoblauch, Joseph Marcus Matthew Stephens and Xin He

University of Chicago, Department of Human Genetics

June 25, 2019

CAUSE: Causal Analysis Using Summary Effects

Genetic Variants as Instrumental Variables

Genetic Variants as Instrumental Variables

Genetic Variants as Instrumental Variables

Mendelian Randomization

Mendelian Randomization

$$\beta_{\mathbf{Y}} = \gamma \beta_{\mathbf{M}}$$
$$\hat{\gamma} = \hat{\beta}_{\mathbf{Y}} / \hat{\beta}_{\mathbf{M}}$$

Mendelian Randomization

$$\beta_{\mathbf{Y},i} = \gamma \beta_{\mathbf{M},i} \qquad i = 1, \dots, p$$
$$\hat{\gamma} = \frac{\sum_{i=1}^{p} \hat{\beta}_{\mathbf{Y},i} \hat{\beta}_{\mathbf{M},i} \sigma_{\mathbf{Y}}^{-2}}{\sum_{i=1}^{p} \hat{\beta}_{\mathbf{M},i}^{2} \sigma_{\mathbf{Y}}^{-2}}$$

LDL Cholesterol and Coronary Artery Disease

Global Lipids Genetics Consortium (2013) van der Harst (2018)

► G causally affects M.

- G causally affects M.
- G does not affect confounders.

- ► G causally affects M.
- ► G does not affect confounders.
- G does not affect Y through any other pathways.

No Cauasl Effect; No Pleiotropy

No Causal Effect; Horizontal Pleiotropy

No Causal Effect; Correlated Pleiotropy

Correlated Pleiotropy Leads to False Positives

Correlated Pleiotropy Arises from Shared Biological Pathways

Example: HDL cholesterol and coronary artery disease

- Clinical trials do not show evidence of a causal effect.
- Simple MR analysis suggests a protective effect.
- If variants associated with LDL or triglycerides are excluded, there is no effect (Voight 2012).

Modeling Correlated Pleiotropy

Modeling Correlated Pleiotropy

Modeling Correlated Pleiotropy

Modeling Horizontal Pleiotropy

• $(\hat{\beta}_{M,i}, s_{M,i}), (\hat{\beta}_{Y,i}, s_{Y,i})$ marginal effect estimates from GWAS

$$\begin{pmatrix} \hat{\beta}_{M,i} \\ \hat{\beta}_{Y,i} \end{pmatrix} \sim N_2 \left(\begin{pmatrix} \beta_{M,i} \\ \beta_{Y,i} \end{pmatrix}, \begin{pmatrix} \hat{s}_{M,i}^2 & \rho \hat{s}_{M,i} \hat{s}_{Y,i} \\ \rho \hat{s}_{M,j} \hat{s}_{Y,i} & \hat{s}_{Y,i}^2 \end{pmatrix} \right)$$

• Estimate ρ and a joint empirical prior for $\beta_{M,i}$ and θ_i (unimodal centered at zero)

•
$$q \sim \mathsf{Beta}(1, 10)$$
, $\gamma, \eta \sim \mathsf{N}(0, \sigma_{\gamma\eta})$

Estimate posteriors for γ, η, and q using an adaptive grid approximation

- Partial Sharing Model: $\gamma = 0$
- Causal model: γ is a free parameter

- Partial Sharing Model: $\gamma = 0$
- Causal model: γ is a free parameter
- Compare model fits using ELPD [Vehtari et al (2016)]

- Partial Sharing Model: $\gamma = 0$
- Causal model: γ is a free parameter
- Compare model fits using ELPD [Vehtari et al (2016)]
- If posteriors estimated under the causal model predict the data significantly better than posteriors estimated under the sharing model we say that the data are consistent with a causal effect.

Simulated Data: False Positives

Simulated Data: Power

- ▶ We used CAUSE to evaluate all pairs of 20 GWAS traits.
- CAUSE identifies fewer pairs as causal than IVW regression, avoiding likely false positives like CAD -i LDL.
- CAUSE is able to detect an effect of blood pressure on stroke that is missed by IVW due to low power in BP GWAS.
- Many pairs of traits have evidence of substantial correlated pleiotropy.

Does higher birth weight protect against metabolic disease?

Genetic Correlations with BW

Horikoshi et al (2016)

Does higher birth weight protect against metabolic disease?

Genetic Correlations with BW

Horikoshi et al (2016)

Birth Weight and T2D Risk

Horikoshi et al (2016); Morris et al (2012)

Birth Weight and T2D Risk

Horikoshi et al (2016); Morris et al (2012)

Birth Weight and T2D Risk

Model Comparison: Variant Contribution to Test Statistic

Sharing Model Posteriors

- CAUSE is robust to both correlated and horizontal pleiotropy.
- Correlated pleiotropy may be a common source of MR false positives.
- Parameter estimates provide information about the amount of sharing and which variants affect the shared factor.

Acknowledgments

He Lab: Nicholas Knoblauch

Stephens Lab: Joseph Marcus

Xin He

Matthew Stephens

Website: https://jean997.github.io/cause/

