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LDL Cholesterol and Coronary Artery Disease

Global Lipids Genetics Consortium (2013)
van der Harst (2018)
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Traditional MR Assumptions
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No Cauasl Effect; No Pleiotropy
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No Causal Effect; Horizontal Pleiotropy
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Correlated Pleiotropy Leads to False Positives
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Correlated Pleiotropy Arises from Shared Biological
Pathways

Example: HDL cholesterol and coronary artery disease

I Clinical trials do not show evidence of a causal effect.

I Simple MR analysis suggests a protective effect.

I If variants associated with LDL or triglycerides are excluded, there is
no effect (Voight 2012).
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Modeling Correlated Pleiotropy
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Modeling Horizontal Pleiotropy
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Estimating Posterior Distributions from Summary Statistics

I (β̂M,i , sM,i ), (β̂Y ,i , sY ,i ) marginal effect estimates from GWAS(
β̂M,i
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)
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Y ,i

))
I Estimate ρ and a joint empirical prior for βM,i and θi (unimodal

centered at zero)

I q ∼ Beta(1, 10), γ, η ∼ N(0, σγη)

I Estimate posteriors for γ, η, and q using an adaptive grid
approximation
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Model Comparison

I Partial Sharing Model: γ = 0

I Causal model: γ is a free parameter

I Compare model fits using ELPD [Vehtari et al (2016)]

I If posteriors estimated under the causal model predict the data
significantly better than posteriors estimated under the sharing model
we say that the data are consistent with a causal effect.
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Simulated Data: False Positives
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Simulated Data: Power
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Pairs of Complex Traits

I We used CAUSE to evaluate all pairs of 20 GWAS traits.

I CAUSE identifies fewer pairs as causal than IVW regression, avoiding
likely false positives like CAD -¿ LDL.

I CAUSE is able to detect an effect of blood pressure on stroke that is
missed by IVW due to low power in BP GWAS.

I Many pairs of traits have evidence of substantial correlated pleiotropy.
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Does higher birth weight protect against metabolic disease?

Genetic Correlations with BW

Horikoshi et al (2016)
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Birth Weight and T2D Risk

IVW p-value: 7.0 · 10−5

GSMR p-value: 3.8 · 10−6
MR-PRESSO p-value: 2.18 · 10−5

CAUSE p-value: 0.066

Horikoshi et al (2016); Morris et al (2012)
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Model Comparison: Variant Contribution to Test Statistic
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Sharing Model Posteriors
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Summary

I CAUSE is robust to both correlated and horizontal pleiotropy.

I Correlated pleiotropy may be a common source of MR false positives.

I Parameter estimates provide information about the amount of sharing
and which variants affect the shared factor.
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