class: center, middle, inverse, title-slide .title[ # L3: Effect Modification and Interaction ] .author[ ### Jean Morrison ] .institute[ ### University of Michigan ] .date[ ### Lecture on 2024-01-24 (updated: 2024-01-29) ] --- `\(\newcommand{\ci}{\perp\!\!\!\perp}\)` # Lecture Outline 1. Effect Modification 1. Interaction 1. Collapsibility --- # 1. Effect Modification --- ## Effect Modification Example - Suppose we have a binary treatment `\(A\)` and a binary outcome `\(Y\)`. - Suppose `\(V\)` is a binary variable representing a pre-existing co-morbidity. - We want to know if treatment `\(A\)` has the same effect in patients with `\(V=1\)` and patients with `\(V = 0\)`. `\(\newcommand{\ci}{\perp\!\!\!\perp}\)` --- ## Effect Modification Example <table> <thead> <tr> <th style="text-align:right;"> \(V\) </th> <th style="text-align:right;"> \(Y(A=0)\) </th> <th style="text-align:right;"> \(Y(A=1)\) </th> <th style="text-align:right;"> \(N\) </th> </tr> </thead> <tbody> <tr> <td style="text-align:right;"> 0 </td> <td style="text-align:right;"> 0 </td> <td style="text-align:right;"> 0 </td> <td style="text-align:right;"> 52 </td> </tr> <tr> <td style="text-align:right;"> 0 </td> <td style="text-align:right;"> 0 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 149 </td> </tr> <tr> <td style="text-align:right;"> 0 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 0 </td> <td style="text-align:right;"> 206 </td> </tr> <tr> <td style="text-align:right;border-bottom: solid;"> 0 </td> <td style="text-align:right;border-bottom: solid;"> 1 </td> <td style="text-align:right;border-bottom: solid;"> 1 </td> <td style="text-align:right;border-bottom: solid;"> 93 </td> </tr> <tr> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 0 </td> <td style="text-align:right;"> 0 </td> <td style="text-align:right;"> 52 </td> </tr> <tr> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 0 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 250 </td> </tr> <tr> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 0 </td> <td style="text-align:right;"> 94 </td> </tr> <tr> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 104 </td> </tr> </tbody> </table> `$$E[Y(1) \vert V = 0] - E[Y(0) \vert V = 0] = 0.48 - 0.6 = -0.11$$` `$$E[Y(1) \vert V = 0] - E[Y(0) \vert V = 1] = 0.71 - 0.4 = 0.31$$` --- ## Effect Modification Definition - Variable `\(V\)` is a *modifier* of the effect of `\(A\)` on `\(Y\)` if the causal effect differs over strata of `\(V\)`. - Effect modification does not care about mechanism. + `\(V\)` does not need to mechanistically alter the effect of `\(A\)`. + `\(V\)` does not even need to be causally related to `\(Y\)`. - Effect modification depends on the choice of effect measurement. --- ## Additive and Multiplicative Modification - Additive effect modification: $$ E[Y(1) \vert V = 1] - E[Y(0) \vert V = 1] \neq \\ E[Y(1) \vert V = 0] - E[Y(0) \vert V = 0] $$ - Multiplicative effect modification: $$ \frac{E[Y(1) \vert V = 1]}{E[Y(0) \vert V = 1]} \neq \frac{E[Y(1) \vert V = 0]}{ E[Y(0) \vert V = 0]} $$ -- - Does additive modification imply multiplicative modification? What about vice-versa? --- ## Additive vs Multiplicative Modification <table> <thead> <tr> <th style="empty-cells: hide;border-bottom:hidden;" colspan="1"></th> <th style="border-bottom:hidden;padding-bottom:0; padding-left:3px;padding-right:3px;text-align: center; " colspan="2"><div style="border-bottom: 1px solid #ddd; padding-bottom: 5px; ">\(V = 0 \)</div></th> <th style="border-bottom:hidden;padding-bottom:0; padding-left:3px;padding-right:3px;text-align: center; " colspan="2"><div style="border-bottom: 1px solid #ddd; padding-bottom: 5px; ">\( V = 1\)</div></th> <th style="border-bottom:hidden;padding-bottom:0; padding-left:3px;padding-right:3px;text-align: center; " colspan="2"><div style="border-bottom: 1px solid #ddd; padding-bottom: 5px; ">Combined</div></th> </tr> <tr> <th style="text-align:left;"> </th> <th style="text-align:right;"> \(A = 0\) </th> <th style="text-align:right;"> \(A = 1\) </th> <th style="text-align:right;"> \(A = 0\) </th> <th style="text-align:right;"> \(A = 1\) </th> <th style="text-align:right;"> \(A = 0\) </th> <th style="text-align:right;"> \(A = 1\) </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;border-bottom: solid;"> \(P[Y(a) = 1]\) </td> <td style="text-align:right;border-bottom: solid;"> 0.6 </td> <td style="text-align:right;border-bottom: solid;border-right: solid;"> 0.80 </td> <td style="text-align:right;border-bottom: solid;"> 0.2 </td> <td style="text-align:right;border-bottom: solid;border-right: solid;"> 0.4 </td> <td style="text-align:right;border-bottom: solid;"> 0.4 </td> <td style="text-align:right;border-bottom: solid;"> 0.6 </td> </tr> <tr> <td style="text-align:left;"> Risk Difference </td> <td style="text-align:right;"> </td> <td style="text-align:right;border-right: solid;"> 0.20 </td> <td style="text-align:right;"> </td> <td style="text-align:right;border-right: solid;"> 0.2 </td> <td style="text-align:right;"> </td> <td style="text-align:right;"> 0.2 </td> </tr> <tr> <td style="text-align:left;"> Risk Ratio </td> <td style="text-align:right;"> </td> <td style="text-align:right;border-right: solid;"> 1.33 </td> <td style="text-align:right;"> </td> <td style="text-align:right;border-right: solid;"> 2.0 </td> <td style="text-align:right;"> </td> <td style="text-align:right;"> 1.5 </td> </tr> </tbody> </table> <br> <table> <thead> <tr> <th style="empty-cells: hide;border-bottom:hidden;" colspan="1"></th> <th style="border-bottom:hidden;padding-bottom:0; padding-left:3px;padding-right:3px;text-align: center; " colspan="2"><div style="border-bottom: 1px solid #ddd; padding-bottom: 5px; ">\(V = 0 \)</div></th> <th style="border-bottom:hidden;padding-bottom:0; padding-left:3px;padding-right:3px;text-align: center; " colspan="2"><div style="border-bottom: 1px solid #ddd; padding-bottom: 5px; ">\( V = 1\)</div></th> <th style="border-bottom:hidden;padding-bottom:0; padding-left:3px;padding-right:3px;text-align: center; " colspan="2"><div style="border-bottom: 1px solid #ddd; padding-bottom: 5px; ">Combined</div></th> </tr> <tr> <th style="text-align:left;"> </th> <th style="text-align:right;"> \(A = 0\) </th> <th style="text-align:right;"> \(A = 1\) </th> <th style="text-align:right;"> \(A = 0\) </th> <th style="text-align:right;"> \(A = 1\) </th> <th style="text-align:right;"> \(A = 0\) </th> <th style="text-align:right;"> \(A = 1\) </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;border-bottom: solid;"> \((P[Y(a) = 1)]\) </td> <td style="text-align:right;border-bottom: solid;"> 0.1 </td> <td style="text-align:right;border-bottom: solid;border-right: solid;"> 0.2 </td> <td style="text-align:right;border-bottom: solid;"> 0.2 </td> <td style="text-align:right;border-bottom: solid;border-right: solid;"> 0.4 </td> <td style="text-align:right;border-bottom: solid;"> 0.15 </td> <td style="text-align:right;border-bottom: solid;"> 0.30 </td> </tr> <tr> <td style="text-align:left;"> Risk Difference </td> <td style="text-align:right;"> </td> <td style="text-align:right;border-right: solid;"> 0.1 </td> <td style="text-align:right;"> </td> <td style="text-align:right;border-right: solid;"> 0.2 </td> <td style="text-align:right;"> </td> <td style="text-align:right;"> 0.15 </td> </tr> <tr> <td style="text-align:left;"> Risk Ratio </td> <td style="text-align:right;"> </td> <td style="text-align:right;border-right: solid;"> 2.0 </td> <td style="text-align:right;"> </td> <td style="text-align:right;border-right: solid;"> 2.0 </td> <td style="text-align:right;"> </td> <td style="text-align:right;"> 2.00 </td> </tr> </tbody> </table> --- ## Types of Effect Modification 1. The causal effect has the same direction in all levels of `\(V\)`. - There may be effect modification only on the additive scale or only on the multiplicative scale. 1. The causal effect is exactly zero in at least one stratum of `\(V\)`. - If this type of effect modification is present on one scale, it will be present on the other. 1. The causal effect has different signs in different strata of `\(V\)` (*qualitative modification*). - If this type of effect modification is present on one scale, it will be present on the other. --- ## Effect Modification in DAGs - Effect modification is hard to represent in DAGs. - There is no DAG feature that always corresponds to effect modification. - Effect modifiers are always connected to the outcome by an open path. --- ## Effect Modification in DAGs - In all of the DAGs below, `\(V\)` could be a modifier of the effect of `\(A\)` on `\(Y\)`. <center>
</center> - In the third graph, `\(W\)` is in the conditioning set. + Why is `\(V\)` associated with `\(Y\)`? - In graphs 2 and 3, `\(V\)` is a *surrogate effect modifier*. --- ## More on Effect Measures - If there is a non-zero effect of `\(A\)` on `\(Y\)` in at least one stratum of `\(V\)` and `\(E[Y(a) \vert V]\)` varies with `\(V\)` for some value of `\(a\)` then - `\(V\)` <u>always</u> modifies the effect of `\(A\)` on `\(Y\)` on either the additive or multiplicative scale (or both). - HernĂ¡n and Robins argue that the additive scale is preferable. --- ## Transportability + The ATE is the average effect in the population being sampled. + An effect estimate is *transportable* if it is a good estimate for the effect in other populations + Differences in effect modifiers between populations could lead to lack of transportability. -- + Example: - In our population `\(P[V = 1] = 0.5\)`. - Average risk difference among those with `\(V = 0\)` is -0.1. - Average risk difference among those with `\(V = 1\)` is 0.3. - What wold be a good effect estimate for a population in which everyone has `\(V = 0\)`? - How about a population in which `\(P[V = 1] = 0.25\)`? -- + There are no guarantees modifiers are transportable either. --- ## Example - There are genetic variants that increase susceptibility to nicotine addiction. - In populations with easy access to smoking tobacco, these variants increase risk of lung cancer. - Tobacco access is an effect modifier. - Without accounting for tobacco access, our causal effect estimate is not transportable. <center>
</center> --- ## Other Reasons to Care About Effect Modification - We might be interested in identifying subpopulations with the most to gain from an intervention. + Should we only treat patients with `\(V = 1\)`? - In some cases, identifying effect modifiers can provide information about the mechanism of the causal effect. - In the genetic example, knowing that tobacco access modifies the effect may help us conclude that the genetic variant affects lung cancer because it affects smoking behavior. --- ## Identifying Counterfactual Means in Subgroups - To characterize effect modification, we need to estimate `\(E[Y(a) \vert V = v]\)`. - Under what conditions is `\(E[Y(a) \vert V = v]\)` identifiable? -- - If `\(E[Y(a)]\)` is identifiable then `\(E[Y(a) \vert V = v]\)` is identifiable. - Recall the four conditions for identifying `\(E[Y(a)]\)`: -- + Consistency + No interference + Positivity - must hold within strata of `\(V\)` + Conditional exchangeablity, conditional on observed variables `\(L\)` --- ## Estimating Counterfactual Means in Subgroups We can use a two step estimation procedure: 1. Stratify the data by `\(V\)`. 2. Use standardization or IP weighting with `\(L\)` to estimate the expected counterfactual within each level of `\(V\)`. --- ## Standardization for Subgroup Effects - The standardized mean of `\(Y(a) \vert V = v\)` is $$ E[Y(a) \vert V = v] = \sum_{l}E[Y(a) \vert V = v, L = l]P[L = l \vert V = v] $$ $$ = \sum_l E[Y \vert A = a, L = l, V = v]P[L = l \vert V = v] $$ --- ## IPW for Subgroup Effects - Or equivalently, the IPW mean: $$ E[Y(a) \vert V = v] = E \left[\frac{I(A = a)Y}{f_{A \vert L, V =v}(A, L)} \Big\vert V = v\right ] $$ - We simply compute the IPW mean within strata defined by `\(V\)`. --- ## Example I simulated 1000 units from the model <center>
</center> $$ V \sim Bern(0.5)\qquad L \sim Bern(0.35)\\\ A \sim Bern(0.6-0.3L)\\\ Y(0) \sim Bern(0.5 + 0.2L)\\\ Z \sim Bern(0.2 + 0.3V)\\\ Y(1) = \begin{cases} 0 & \ \ Y(0) = 0 \\\ 1- Z & \ \ Y(0) =1 \end{cases}\\\ $$ --- ## Example If we knew the full counterfactuals, we could compute the conditional effects directly <table> <thead> <tr> <th style="text-align:right;"> \(V\) </th> <th style="text-align:right;"> \(N\) </th> <th style="text-align:right;"> \(\bar{Y}(0)\) </th> <th style="text-align:right;"> \(\bar{Y}(1)\) </th> <th style="text-align:right;"> \(\bar{Y}(1)-\bar{Y}(0)\) </th> </tr> </thead> <tbody> <tr> <td style="text-align:right;"> 0 </td> <td style="text-align:right;"> 520 </td> <td style="text-align:right;"> 0.59 </td> <td style="text-align:right;"> 0.47 </td> <td style="text-align:right;"> -0.12 </td> </tr> <tr> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 480 </td> <td style="text-align:right;"> 0.57 </td> <td style="text-align:right;"> 0.28 </td> <td style="text-align:right;"> -0.29 </td> </tr> </tbody> </table> `$$E[Y(1) \vert V = 0]- E[Y(0) \vert V = 0] = -0.12$$` `$$E[Y(1) \vert V = 1]- E[Y(0) \vert V = 1] = -0.29$$` --- ## Example To estimate conditional causal effects in the observed data, we make use of the fact that `\(Y(a) \ci A \vert L\)` to compute the standardized means. <table class="table" style="width: auto !important; float: left; margin-right: 10px;"> <thead> <tr> <th style="text-align:right;"> \(L\) </th> <th style="text-align:right;"> \(V\) </th> <th style="text-align:right;"> \(A\) </th> <th style="text-align:right;"> \(N\) </th> <th style="text-align:right;"> \(\bar{Y}\) </th> </tr> </thead> <tbody> <tr> <td style="text-align:right;"> 0 </td> <td style="text-align:right;"> 0 </td> <td style="text-align:right;"> 0 </td> <td style="text-align:right;"> 133 </td> <td style="text-align:right;"> 0.48 </td> </tr> <tr> <td style="text-align:right;"> 0 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 0 </td> <td style="text-align:right;"> 122 </td> <td style="text-align:right;"> 0.55 </td> </tr> <tr> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 0 </td> <td style="text-align:right;"> 0 </td> <td style="text-align:right;"> 129 </td> <td style="text-align:right;"> 0.78 </td> </tr> <tr> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 0 </td> <td style="text-align:right;"> 101 </td> <td style="text-align:right;"> 0.76 </td> </tr> </tbody> </table> <table class="table" style="width: auto !important; margin-left: auto; margin-right: auto;"> <thead> <tr> <th style="text-align:right;"> \(L\) </th> <th style="text-align:right;"> \(V\) </th> <th style="text-align:right;"> \(A\) </th> <th style="text-align:right;"> \(N\) </th> <th style="text-align:right;"> \(\bar{Y}\) </th> </tr> </thead> <tbody> <tr> <td style="text-align:right;"> 0 </td> <td style="text-align:right;"> 0 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 202 </td> <td style="text-align:right;"> 0.40 </td> </tr> <tr> <td style="text-align:right;"> 0 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 194 </td> <td style="text-align:right;"> 0.23 </td> </tr> <tr> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 0 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 56 </td> <td style="text-align:right;"> 0.62 </td> </tr> <tr> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 63 </td> <td style="text-align:right;"> 0.30 </td> </tr> </tbody> </table> `$$P[L = 0 \vert V = 0] = \frac{335}{520} = 0.64$$` $$ `\begin{split} \hat{E}[Y(1) \vert V = 0] = & E[Y \vert A = 1, V = 0, L = 0 ] P[L = 0 \vert V = 0] + \\ & E[Y \vert A = 1, V =0, L = 1] P[L = 1 \vert V = 0]\\ = & 0.4\cdot 0.64 + 0.62\cdot 0.36 = 0.48 \end{split}` $$ --- ## Example <table class="table" style="width: auto !important; float: left; margin-right: 10px;"> <thead> <tr> <th style="text-align:right;"> \(L\) </th> <th style="text-align:right;"> \(V\) </th> <th style="text-align:right;"> \(A\) </th> <th style="text-align:right;"> \(N\) </th> <th style="text-align:right;"> \(\bar{Y}\) </th> </tr> </thead> <tbody> <tr> <td style="text-align:right;"> 0 </td> <td style="text-align:right;"> 0 </td> <td style="text-align:right;"> 0 </td> <td style="text-align:right;"> 133 </td> <td style="text-align:right;"> 0.48 </td> </tr> <tr> <td style="text-align:right;"> 0 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 0 </td> <td style="text-align:right;"> 122 </td> <td style="text-align:right;"> 0.55 </td> </tr> <tr> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 0 </td> <td style="text-align:right;"> 0 </td> <td style="text-align:right;"> 129 </td> <td style="text-align:right;"> 0.78 </td> </tr> <tr> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 0 </td> <td style="text-align:right;"> 101 </td> <td style="text-align:right;"> 0.76 </td> </tr> </tbody> </table> <table class="table" style="width: auto !important; margin-left: auto; margin-right: auto;"> <thead> <tr> <th style="text-align:right;"> \(L\) </th> <th style="text-align:right;"> \(V\) </th> <th style="text-align:right;"> \(A\) </th> <th style="text-align:right;"> \(N\) </th> <th style="text-align:right;"> \(\bar{Y}\) </th> </tr> </thead> <tbody> <tr> <td style="text-align:right;"> 0 </td> <td style="text-align:right;"> 0 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 202 </td> <td style="text-align:right;"> 0.40 </td> </tr> <tr> <td style="text-align:right;"> 0 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 194 </td> <td style="text-align:right;"> 0.23 </td> </tr> <tr> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 0 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 56 </td> <td style="text-align:right;"> 0.62 </td> </tr> <tr> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 63 </td> <td style="text-align:right;"> 0.30 </td> </tr> </tbody> </table> $$ P[L = 0 \vert V = 0] = \frac{335}{520} = 0.64$$ $$ \hat{E}[Y(1) \vert V = 0] = 0.48 $$ $$ `\begin{split} \hat{E}[Y(0) \vert V = 0] = & E[Y \vert A = 0, V = 0, L = 0 ] P[L = 0 \vert V = 0] + \\ & E[Y \vert A = 0, V =0, L = 1] P[L = 1 \vert V = 0]\\ = & 0.48\cdot 0.64 + 0.78\cdot 0.36 = 0.59 \end{split}` $$ `$$\hat{E}[Y(1) \vert V = 0]-\hat{E}[Y(0) \vert V = 0] = -0.11$$` --- ## Special Case: V = L - If `\(Y(a) \ci A \vert L\)` and we are also interested in effect modification by `\(L\)`, we can skip the step of computing the standardized mean. - Instead, we simply stratify by `\(L\)` and compute `\(E[Y(a) \vert L = l] = E[Y \vert A = a, L = l]\)`. - These are the *stratified* means. <table class="table" style="width: auto !important; margin-left: auto; margin-right: auto;"> <thead> <tr> <th style="text-align:right;"> \(L\) </th> <th style="text-align:right;"> \(A\) </th> <th style="text-align:right;"> \(N\) </th> <th style="text-align:right;"> \(\bar{Y}\) </th> </tr> </thead> <tbody> <tr> <td style="text-align:right;"> 0 </td> <td style="text-align:right;"> 0 </td> <td style="text-align:right;"> 255 </td> <td style="text-align:right;"> 0.51 </td> </tr> <tr> <td style="text-align:right;"> 0 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 396 </td> <td style="text-align:right;"> 0.32 </td> </tr> <tr> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 0 </td> <td style="text-align:right;"> 230 </td> <td style="text-align:right;"> 0.77 </td> </tr> <tr> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 119 </td> <td style="text-align:right;"> 0.45 </td> </tr> </tbody> </table> --- ## Special Case: V = A - If there is effect modification by treatment status, the causal effect among those who received treatment `\(A=1\)` is different from the causal effect among those who received treatment `\(A = 0\)`. - The *average treatment effect among the treated* (ATT) is $$ E[Y(1) \vert A = 1] - E[Y(0) \vert A = 1] $$ - Note that if the ATT is different from the ATE, this implies that unconditional exchangeability ( `\(Y(a) \ci A\)` ) does not hold. + Why? --- ## Average Effect Among the Treated <center> <img src="img/3_att.png" width="85%" /> </center> --- ## Identifying the ATT - To identify the ATT, we don't need full conditional exchangeability which says that $$ Y(a) \ci A \vert L$$ for all `\(a\)`. - We only need *partial exchangeability*: `\(Y(0) \ci A \vert L\)` -- - Equivalently, to identify the average effect among the non-treated, we need `\(Y(1) \ci A \vert L\)`. - Generally, to identify `\(E[Y(a) \vert A = a^\prime]\)` we need $$ Y(a) \ci A \vert L$$ for all `\(a \neq a^\prime\)`. --- ## Standardization to Estimate the ATT - From our previous expression for the conditional standardized mean $$ E[Y(a) \vert A = 1] = \sum_l E[Y(a) \vert L=l, A = 1 ]P[L = l \vert A = 1] $$ -- - From consistency we know `$$E[Y(1) \vert L = l, A = 1] = E[Y \vert L = l, A = 1]$$` -- - From partial exchangeability, we know that $$ E[Y(0) \vert L = l, A = 1] = E[Y(0) \vert L = l] $$ -- - Consistency again: $$ E[Y(0) \vert L = l] = E[Y \vert L = l, A = 0]$$ -- - So $$ E[Y(a) \vert A = 1] = \sum_l E[ Y \vert L=l, A = a ]P[L = l \vert A = 1] $$ --- ## ATT Example In the simulated data example, the average effect among the treated is $$ E[Y(1) \vert A = 1] = 0.35\\\ E[Y(0) \vert A = 1] = 0.53\\\ E[Y(1)-Y(0) \vert A = 1] = -0.18 $$ To estimate these values using standardization we compute <table class="table" style="width: auto !important; float: left; margin-right: 10px;"> <thead> <tr> <th style="text-align:right;"> \(L\) </th> <th style="text-align:right;"> \(A\) </th> <th style="text-align:right;"> \(N\) </th> <th style="text-align:right;"> \(\bar{Y}\) </th> </tr> </thead> <tbody> <tr> <td style="text-align:right;"> 0 </td> <td style="text-align:right;"> 0 </td> <td style="text-align:right;"> 255 </td> <td style="text-align:right;"> 0.51 </td> </tr> <tr> <td style="text-align:right;"> 0 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 396 </td> <td style="text-align:right;"> 0.32 </td> </tr> <tr> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 0 </td> <td style="text-align:right;"> 230 </td> <td style="text-align:right;"> 0.77 </td> </tr> <tr> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 1 </td> <td style="text-align:right;"> 119 </td> <td style="text-align:right;"> 0.45 </td> </tr> </tbody> </table> $$ P[L = 0 \vert A = 1] = 0.77\\\ P[L = 1 \vert A = 1] = 0.23 $$ $$ \hat{E}[Y(1) \vert A = 1] = 0.32\cdot 0.77 + 0.45\cdot 0.23 = 0.35\\\ \hat{E}[Y(0) \vert A = 1] = 0.51\cdot 0.77 + 0.77\cdot 0.23 = 0.57 $$ --- ## Matching - Matching is an alternative method to adjust for confounders `\(L\)`. - For each person receiving `\(A = 1\)`, we identify a "match" with the same value of `\(L\)` who received `\(A = 0\)`. + We leave aside the rest of the data. - In the resulting matched population, the distribution of `\(L\)` is the same in the `\(A=1\)` and `\(A =0\)` cohorts. - Since we matched to the `\(A = 1\)` cohort, we are now able to estimate the ATT as `\(E_m[Y \vert A = 1] - E_m[Y \vert A = 0]\)` where the expectation is with respect to the matched population. - Alternatively, we could have matched to the `\(A = 0\)` cohort, or to a different distribution of `\(L\)`. --- # 2. Interactions --- ## Interactions Describe Joint Interventions - An *interaction* between variables refers to relationships between joint counterfactuals. - We say that there is an additive interaction between `\(A\)` and `\(E\)` if `$$E[Y(A = 1, E = 0)] - E[Y(A = 0, E = 0)] \neq \\E[Y(A = 1, E = 1)] - E[Y(A = 0, E = 1)].$$` - Like effect modification, interaction depends on the effect measure. + There may be an additive but not a multiplicative interaction or vice versa. --- ## Interactions in DAGs - Like effect modification, interactions are hard to clearly indicate in DAGs. - In order for an interaction between `\(A\)` and `\(E\)` to occur, `\(Y\)` must be a descendant of both `\(A\)` and `\(E\)`. <center> <img src="img/3_swig_ix.png" width="45%" /> </center> --- ## Example - `\(Y\)` indicates whether or not the lamp is on. - `\(A\)` indicates if there is a bulb in the lamp. - `\(E\)` indicates if the lamp is plugged in. - The lamp is on if it is pulgged in and has a bulb: `\(Y(1, 1) = 1\)` - Otherwise it is off: `\(Y(1, 0) = Y(0, 1) = Y(0, 0) = 0\)`. - There is an interaction because `\(Y(1, 0) - Y(0, 0) = 0\)` and `\(Y(1, 1) - Y(0, 1) = 1\)`. + Adding a bulb is effective if the lamp is plugged in but otherwise is ineffective. <center> <img src="img/3_swig_ix.png" width="35%" /> </center> --- ## Identifying Interactions - In order to identify an interaction, we must be able to identify `\(Y(a, e)\)` for all values of `\(a\)` and `\(e\)`. - We need our usual four identification criteria, but they need to apply to the joint counterfactual. - Consistency: `\(A_i = a\)` and `\(E_i = e\)` `\(\Rightarrow\)` `\(Y_i = Y_i(a, e)\)`. - Positivity: `\(P[A = a, E=e \vert L = l] > 0\)` for all `\(a\)`, `\(e\)`, `\(l\)`. - Exchangeability: `\(Y(a, e) \ci A, E \vert L\)` - If these hold, we can estimate `\(E[Y(a, e)]\)` using the same standardization or IPW strategy we used for single interventions. --- ## Effect Modification vs Interaction - When `\(Y(a, e) \ci A, E\)`, we have $$ E[Y(a, e)] = E[Y(a) \vert E = e] = E[Y(e) \vert A = a]= E[Y \vert A=a, E=e] $$ - So interaction between `\(A\)` and `\(E\)` implies that `\(E\)` is a modifier of the effect of `\(A\)` on `\(Y\)`. - Or equivalently, `\(A\)` is a modifier of the effect of `\(E\)` on `\(Y\)`. - If we are only willing to assume `\(Y(a) \ci A \vert L\)`, then we can identify modification but not interaction. --- # 3. Collapsibility --- ## Collapsibility - An association measure is *collapsible* with respect to a variable `\(Z\)` if the measure in the entire population is equal to a weighted average of the measure within strata. - The average treatment effect and risk ratio are collapsible: $$ E[Y(1)] - E[Y(0)] = \sum_{z}(E[Y(1) \vert Z=z]-E[Y(0) \vert Z=z])P[Z=z] $$ $$ \frac{E[Y(1)]}{E[Y(0)]} = \sum_l \frac{E[Y(1) \vert Z=z]}{E[Y(0) \vert Z=z]}w_z $$ $$ w_z = \frac{E[Y(0)\vert Z=z]P[Z=z]}{E[Y(0)]} $$ - For ATE and RR, if we know strata specific effects, we know the possible range of the population effect. - This is not the case for the odds ratio. --- ## Collapsibility of Association Measures - Effect measures are functions of the counterfactual distribution. - Association measures are functions of distribution of the observed data. - `\(E[Y(1)] - E[Y(0)]\)` is an effect measure. `\(E[Y \vert A = 1] - E[Y \vert A = 0]\)` is an association measure. - The same definition of collapsibility applies to association measures. - If `\(g(P(a, y))\)` is an association measure, then `\(g\)` is collapsible over `\(Z\)` if $$g(P(a, y)) = \sum_z g(P(a, y \vert z))w(z) $$ where `\(w(z) \geq 0\)` and `\(\sum_z w(z) = 1.\)` --- ## Strict Collapsibility - An association measure is strictly collapsible over `\(A\)` if `\(g(P(a, y \vert z)) = g(P(a, y))\)` for all values of `\(z\)`. - Strict collapsibility says that the association measure is the same within strata as in the population. --- ## Collapsibility and Confounding - One definition of confounding says that if `\(g(P(a, y \vert z)) \neq g(P(a, y))\)`, then `\(Z\)` is a confounder and we should adjust for it. - Is this definition correct if `\(g\)` is the risk difference? - What about risk ratio? - What about odds ratio? --- ## Collapsibility and Confounding **Theorem:** If `\(g\)` is the risk difference, faithfulness holds, and `\(g\)` is strictly collapsible over `\(Z\)` then `\(A\)` and `\(Y\)` are unconfounded by `\(Z\)`. - The reverse is not true, if `\(g\)` is not collapsible over `\(Z\)`, we can't conclude that `\(Z\)` is a confounder. - This theorem does not hold for the odds ratio. --- ## Non-Collapsibility of the Odds Ratio <table> <thead> <tr> <th style="empty-cells: hide;border-bottom:hidden;" colspan="1"></th> <th style="border-bottom:hidden;padding-bottom:0; padding-left:3px;padding-right:3px;text-align: center; " colspan="2"><div style="border-bottom: 1px solid #ddd; padding-bottom: 5px; ">Male</div></th> <th style="border-bottom:hidden;padding-bottom:0; padding-left:3px;padding-right:3px;text-align: center; " colspan="2"><div style="border-bottom: 1px solid #ddd; padding-bottom: 5px; ">Female</div></th> <th style="border-bottom:hidden;padding-bottom:0; padding-left:3px;padding-right:3px;text-align: center; " colspan="2"><div style="border-bottom: 1px solid #ddd; padding-bottom: 5px; ">Combined</div></th> </tr> <tr> <th style="text-align:left;"> </th> <th style="text-align:left;"> \(A = 0\) </th> <th style="text-align:left;"> \(A = 1\) </th> <th style="text-align:left;"> \(A = 0\) </th> <th style="text-align:left;"> \(A = 1\) </th> <th style="text-align:left;"> \(A = 0\) </th> <th style="text-align:left;"> \(A = 1\) </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;"> \(Y = 0\) </td> <td style="text-align:left;"> 100 </td> <td style="text-align:left;border-right: solid;"> 50 </td> <td style="text-align:left;"> 200 </td> <td style="text-align:left;border-right: solid;"> 150 </td> <td style="text-align:left;"> 300 </td> <td style="text-align:left;"> 200 </td> </tr> <tr> <td style="text-align:left;border-bottom: solid;"> \( Y= 1\) </td> <td style="text-align:left;border-bottom: solid;"> 150 </td> <td style="text-align:left;border-bottom: solid;border-right: solid;"> 200 </td> <td style="text-align:left;border-bottom: solid;"> 50 </td> <td style="text-align:left;border-bottom: solid;border-right: solid;"> 100 </td> <td style="text-align:left;border-bottom: solid;"> 200 </td> <td style="text-align:left;border-bottom: solid;"> 300 </td> </tr> <tr> <td style="text-align:left;"> Risk </td> <td style="text-align:left;"> 0.6 </td> <td style="text-align:left;border-right: solid;"> 0.8 </td> <td style="text-align:left;"> 0.2 </td> <td style="text-align:left;border-right: solid;"> 0.4 </td> <td style="text-align:left;"> 0.4 </td> <td style="text-align:left;"> 0.6 </td> </tr> <tr> <td style="text-align:left;"> Risk Difference </td> <td style="text-align:left;"> </td> <td style="text-align:left;border-right: solid;"> 0.2 </td> <td style="text-align:left;"> </td> <td style="text-align:left;border-right: solid;"> 0.2 </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> 0.2 </td> </tr> <tr> <td style="text-align:left;"> Risk Ratio </td> <td style="text-align:left;"> </td> <td style="text-align:left;border-right: solid;"> 1.33 </td> <td style="text-align:left;"> </td> <td style="text-align:left;border-right: solid;"> 2 </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> 1.5 </td> </tr> <tr> <td style="text-align:left;"> Odds Ratio </td> <td style="text-align:left;"> </td> <td style="text-align:left;border-right: solid;"> 2.67 </td> <td style="text-align:left;"> </td> <td style="text-align:left;border-right: solid;"> 2.67 </td> <td style="text-align:left;"> </td> <td style="text-align:left;"> 2.25 </td> </tr> </tbody> </table>