
Mendelian randomization (MR) uses genetic variation 
to address causal questions about whether modifiable 
exposures influence health, developmental or social 
outcomes1. Exposures can be any factor robustly associ-
ated with genetic variation in individuals; for example, 
an exposure could include measurable characteristics 
of an individual such as body mass index (BMI) or less 
directly observable traits such as the expression of a  
particular gene in a specific tissue.

The statistical methodology for MR is generally based 
on instrumental variable (IV) analysis. An IV, or ‘instru-
ment’, is related to the exposure but not to the outcome 
of interest, other than through its association with the 
exposure. IV analysis was first proposed a century ago 
and is an approach to causal inference that uses an 
IV to make causal effect estimates in the presence of 
unobserved confounding of the exposure and the out-
come. IV analyses can be applied to any source of var-
iation in an exposure that is unrelated to the outcome, 
including investigator-initiated treatment randomiza-
tion in a randomized controlled trial (RCT) or when 
a natural experiment provides a plausible source of exo-
genous or unconfounded variation2–4. MR is based on the 
assumption that genetic variants provide a source of such 
exogenous variation in the exposure and can therefore act 
as an IV1. MR can be applied using any genetic variation 
that satisfies the requirements of an IV5, although it is usu-
ally implemented using single-nucleotide polymorphisms 
(SNPs). Box 1 further outlines the principles of MR.

Using genetic variants in this way, MR avoids bias 
from unobserved confounding of the exposure and 

outcome. However, there are important additional 
assumptions required for causal inference and effect 
estimation that are different to those used in other causal 
effect estimation methods. Causal effect estimates from 
MR can be evaluated within a triangulation of evidence 
framework, which involves interpreting findings along-
side results from complementary approaches that rely on 
different assumptions. When using this approach, it is 
important that sources of bias in different study modal-
ities are unrelated to each other so that the magnitude 
and direction of the bias in one study will not predict the 
size and direction of bias in the others6–8.

MR studies — especially two-sample studies using 
previously published summary-level genetic associa-
tion data — provide a rapid and affordable approach 
to evaluating causal questions. There is an urgent need 
for these tools because many causal questions in health 
research cannot be adequately answered with conven-
tional observational study designs and are not amenable 
to evaluation with RCTs for logistical or ethical reasons. 
MR is especially appealing because it relies on assump-
tions that differ from those of conventional observa-
tional studies and therefore circumvents some of their 
common biases1,8. The range of applications of MR and 
closely related methods for understanding causal mech-
anisms has increased rapidly in the past 20 years. The 
increasing availability of data and the vast expansion of 
IV methods have overcome some of the original barriers 
to MR caused by lack of data and the inability to assess 
the robustness of results obtained1. Major investments in 
collecting genetic data within large research studies have 

Instrumental variable
(IV). A variable associated  
with an exposure that is not 
associated with the outcome 
through any other pathway.

Natural experiment
Natural experiments are 
variation in any exposures  
or risk factors that occurred  
by chance in the population 
without conscious or deliberate 
intervention from investigators 
or scientists.
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enabled numerous applications of MR and allowed for 
increased statistical power and more precise effect esti-
mates. Further, methodological innovation to enhance 
MR analyses is flourishing and innovations aim to allow 
for correct estimation with more plausible assumptions 
and estimate more complex effects, which include inde-
pendent effects of multiple phenotypes or age-sensitive 
exposures. We therefore focus on the principles of MR 
and detail a few core MR estimation methods. The meth-
ods for MR listed here should not be taken as a definitive 
list of all potential methods available.

In this Primer, we provide guidance on the underly-
ing principles of MR, discuss the information necessary 
to decide whether an MR approach is appropriate and 
feasible, and review best contemporary practices for MR. 
We outline the principles and assumptions underlying 
MR, along with the data required. Next, we detail the 
core methods for estimation of causal effects and explain 
how the assumptions underlying MR can be verified or 
subjected to sensitivity analyses. We then describe a 
range of studies that have applied MR in different set-
tings, detail the importance of triangulating MR results 
with findings using other study designs and discuss steps 
to improving the openness of research involving MR. 
Finally, we outline sources of bias that may affect MR 
studies that cannot be corrected for with current meth-
ods and discuss some of the challenges and opportunities  
for MR in the future.

Experimentation
The essence of an MR design is that the association 
between a genetic variant (G) and an outcome (Y) can 
be used to test whether and by how much the exposure 
of interest (X) influences the outcome, provided that 
the genetic variant is associated with the exposure of 
interest and has no other source of association with the 
outcome1,8,9. Bias originating from confounding of 
the exposure and outcome should not influence the MR 
estimate. The rationale of MR studies parallels that of 
RCTs in which randomization influences the treatment 
received by participants, there are no confounders of 

randomization and the outcome and has no other plausi-
ble mechanism to influence health outcomes other than 
through treatment (FIg. 1). In RCTs, randomly assigned 
treatment therefore evaluates the effect of treatment on 
the outcome, whereas in MR, a genetic variant is treated 
as a naturally occurring form of randomization.

As an example, FIg. 2a shows a directed acyclic graph 
for an RCT aimed at estimating the causal effect of 
lowering circulating levels of the inflammatory marker 
C-reactive protein (CRP) on systolic blood pressure 
(SBP), in which participants are randomized to receive 
a CRP-lowering medication or placebo. Alternatively, the 
effect of long-term differences in circulating CRP could 
be estimated with MR by considering a genetic variant 
that is known to alter CRP levels (FIg. 2b). The directed 
acyclic graphs for both studies are the same as long as 
certain assumptions are satisfied (discussed below).

In our hypothetical RCT, an intention-to-treat analy-
sis can be conducted to determine whether the treat-
ment influences the outcome by comparing SBP among 
individuals randomly assigned to the CRP-lowering 
medication to SBP in participants randomly assigned 
to placebo10,11. Intention-to-treat analysis estimates the 
effect on the outcome of being assigned to the group 
allocated to treatment, rather than receiving that treat-
ment. A frequently used approach for analysis is to 
compare the mean SBP among individuals randomized 
to treatment to the mean SBP among individuals  
randomized to control:

β E G E G= (SBP = 1) − (SBP = 0) (1)1

where β1 is the effect on SBP of being assigned to the 
treatment group, G is an indicator of randomization and 
SBP is measured systolic blood pressure. Alternatively, a 
linear regression can be used:

E G β β G(SBP ) = + (2)0 1

where β0 is a constant. As there are no confounders of 
randomization and SBP, there is no need to control for 
any variables to derive an unconfounded estimate of the 
effect of randomization. Therefore, in a setting where 
G is binary, β1 as estimated in Eq. 1 is identical to β1 as 
estimated in Eq. 2 and both estimate the causal effect 
of randomized treatment groups on SBP. Being rand-
omized to CRP-lowering medication should only affect 
SBP if there is a causal effect of CRP on SBP.

A potential disadvantage of the intention-to-treat 
estimate, for many questions of substantive interest, is 
that it does not give the magnitude of the effect of the 
exposure on the outcome — for example, of CRP on SBP 
in the above example. It only determines whether or not 
there is a causal effect. To estimate the size of that causal 
effect, the degree to which the instrument affects the 
exposure must be taken into account. IV analyses are an 
alternative estimation method that can be used to derive 
an estimate of the causal effect of the treatment (here, 
CRP) on the outcome (SBP) by accounting for the size of 
the association between randomization and CRP3,4,12–15. 
In this scenario, randomization becomes the instrument 
for the estimation. In its simplest form, IV analysis takes 
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A trait that influences both  
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of interest.
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the ratio of the effect of randomization on SBP to the 
effect of randomization on CRP:

γ
E G E
E G E G

=
[SBP = 1] − [SBP G = 0]
[CRP = 1] − [CRP = 0]

(3)1

where γ1 is known as the Wald ratio estimator and CRP 
is the level of circulating C-reactive protein. The numer-
ator of Eq. 3 is simply Eq. 1, but here the association is 
scaled by the effect of randomization on CRP. Under the 
IV conditions described in Box 2, this estimator provides 
a test of whether there is a causal effect of CRP on SBP.

IV analyses can be applied to any potential source of 
randomization, including intentionally designed RCTs 
or quasi-randomization in natural experiments15,16. The 
term MR is applied when the quasi-randomization arises 
from genetic variation and a phenotype influenced by 
the genetic variant is the exposure of interest17,18. The 
genetic variant is referred to as the genetic instrument. 
For example, naturally occurring genetic variants in the 
gene encoding CRP regulate blood levels of CRP and 
such variants have been used to estimate the effects of 
circulating CRP levels on SBP19,20.

The above example highlights an important dif-
ference between RCTs and MR: RCTs estimate the 
effect of a particular intervention or treatment over 
the timeframe of the study, whereas MR estimates the 
lifetime effects of the genetic variants, as discussed in 
a recent preprint21. This can lead to substantial differ-
ences in the effect estimates obtained, owing to the 
differences in the time period over which the effects 
are estimated. There are a number of other differences 
between RCTs and MR. Although MR was first pro-
posed using family data where the difference in alleles 
between siblings is random, data limitations mean that 
most MR is conducted using data on unrelated individu-
als1. In MR using unrelated individuals, the similarity 
between the allele groups is not guaranteed as it is in 
a well-conducted RCT. Further, associations between 
allele distribution and traits can exist at a population 

level owing to population stratification or assortative 
mating. The particular genetic variants used in the MR 
may also have effects on the outcome that are not due to 
the exposure received by the individual22. These issues 
all represent violations of the conditions required for IV 
estimation, which are described in detail below. How 
these violations may occur in MR studies and potential 
mechanisms to detect such violations are discussed in 
the ‘Results’ and ‘Limitations and optimizations’ sections 
of this Primer.

Conditions required for MR estimation
Interpretation of results from MR studies relies on 
four conditions12,23. The first three of these conditions 
are usually referred to as the conditions for a valid IV 
and are required for any IV analysis to test whether the 
exposure has a causal effect on the outcome. These are 
described in Box 2. In our simplified example of CRP 
and SBP, we imagine only a single IV; however, MR is 
easily extendable to take advantage of multiple genetic 
variants that influence the same exposure24. When mul-
tiple genetic variants can be identified that fulfill the IV 
conditions, they can be used to improve the statistical 
power of MR analyses25,26.

The three IV conditions described in Box 2 are 
sufficient to test the exact null hypothesis as they can 
determine the presence or lack of a causal effect of the 
exposure on the outcome. However, they are not suffi-
cient to derive a point estimate of the size of the effect of 
the exposure on the outcome27,28. This requires an addi-
tional condition27 known as a point-estimate-identifying 
condition or fourth IV condition. Several alternative 
point-estimate-identifying conditions — which permit  
subtly different interpretations of the IV estimate — have 
been described and researchers can adopt the version 
of the condition which seems most plausible for the 
setting at hand17,28. Box 3 outlines the most popular 
of these alternative point-estimate-identifying condi-
tions and the effect estimate obtained from each one. 
Additionally, the vast majority of MR estimation meth-
ods (with non-linear MR29 being the notable exception) 
impose the assumption that the relationship between 
the exposure and the outcome is linear across different 
values of the exposures.

Biases that compromise the interpretation of an RCT 
can also undermine MR studies. For example, if random 
assignment in an RCT influences who participates in 
follow-up assessments, typical analyses of the RCT are 
biased. Similarly, if the genetic variants used in MR influ-
ence who has available outcome data — either owing 
to differential survival or study participation — the  
MR study will be biased30.

Finally, data used in MR additionally require the 
assumption that changes in genetic variation are equiv-
alent in their effects to changes in the exposure through 
environmental or pharmaceutical manipulation — a 
concept known as gene–environment equivalence31. 
Given that genetic variants will influence the developing 
human from conception, the interpretation is applied to 
the influence of the variants from conception onwards. 
These particular MR-related issues are discussed  
in Box 4.

Box 1 | The principles of the MR approach

The Mendelian randomization (MR) approach draws on Mendel’s first and second laws 
of genetic inheritance: the law of segregation and the law of independent assort-
ment206. The law of segregation indicates that at every point in the autosomal genome, 
offspring randomly inherit one allele from their mother and one allele from their father. 
The law of independent assortment implies that these alleles will be passed to offspring 
independently of each other, except in regions of the genome that are genetically 
linked in the DNA of the parents.

The first extended exposition of MR1 was in the context of family-based studies. 
Its analogy with randomized controlled trials was in the context of the random allocation 
of variants from parents to their children. At the time of this first description, adequate 
family-based data were not available and ‘approximate’ MR in population studies was 
advocated for instead; indeed, family-based data are still only used in a small minority 
of published MR studies. The advocacy of population studies was based on the premise 
that at a population level, genetic variants can identify groups that differ, on average, 
with respect to a modifiable exposure. In these studies, genetically defined group mem-
bership should be unrelated to factors that may confound conventional observational 
associations, including behavioural, social and physiological exposures that occur after 
conception1,4,6,206,207. Therefore, genetic associations between traits should be free from 
confounding and any difference in outcomes between groups defined by genetic varia-
tion can be attributed to the genetic variation, assuming no selection bias owing to that 
genetic variation.

  3NATURE REVIEWS | MeThoDS PRIMeRS | Article citation ID:             (2022) 2:6 

P r i m e r

0123456789();: 



Data used for MR estimation
MR studies can be conducted using individual-level data 
(including genetic and phenotype measures for each 
individual in the study) or summary data (on the asso-
ciation between each genetic instrument and the expo-
sure and the outcome phenotypes of interest). Summary 
data are often obtained from genome-wide association 
studies (GWAS), which estimate the association between 
SNPs and the exposure and SNPs and the outcome traits.

When individual-level data are used for esti-
mation, the statistical power of an MR analysis (or, 
equivalently, the precision of the estimate that can be 
derived) increases in proportion to the sample size and 

the variance in the exposure explained by the genetic 
instruments. When summary data are used, the preci-
sion of the MR estimate depends on how precisely the 
associations between the genetic variants and each of 
the exposure and the outcome have been estimated — in 
other words, how large the standard error of the esti-
mated association is. Genetic variants typically explain 
only a small proportion of the variation in the relevant 
phenotype; as a result, low statistical power and impre-
cise effect estimates are common in MR studies and 
well-powered studies usually require large datasets. 
Power calculators are available for simple MR studies to 
determine whether a particular sample size is sufficient 
for the estimation to give reasonably precise results32–35. 
Simulation studies to determine power are also usually 
used to accommodate unique data features36.

The association of the proposed genetic instrument 
with the exposure can be estimated in a sample other than 
that used to estimate the effect of the proposed genetic 
instrument on the outcome37. MR conducted in this way 
is referred to as ‘two-sample MR’. The capacity to use two 
different samples for MR analyses has dramatically broad-
ened the scope of MR studies because when either the 
desired exposure or outcome of a study is rare or expensive 
to measure, it can be difficult to identify a dataset with data 
on the genetic instrument, exposure and outcome. An 
important assumption for two-sample MR estimation is 
that the two samples are from the same underlying popu-
lation, or more narrowly that the association between the 
genetic variants and exposure is the same in both samples, 
although that exposure may not be measured or reported 
in the sample included in the outcome dataset38. To satisfy 
this assumption, two-sample approaches usually use data 
from the most similar populations possible, with respect 
to genetic ancestry and contextual factors such as the prev-
alence of environmental exposures and the timeframe in 
which the measurements were taken.

The method of estimation and applicable sensitivity 
analyses used in MR depend on whether individual par-
ticipant or summary-level data are used to conduct the 
analyses39. Using multiple genetic instruments in combi-
nation improves statistical power because the combina-
tion increases the total fraction of the exposure variance 
explained by the instruments26,40. The availability of mul-
tiple genetic instruments is also valuable for detecting or 
avoiding bias if one or more of the IV conditions are not 
met for some or all of the instruments.

Instrument selection
Genetic variants used as instruments for MR should be 
associated with the exposure of interest, so that they sat-
isfy IV condition 1 (Box 2). This can be through the use 
of variants with known functionality or through the 
selection of variants that are robustly associated with 
the exposure. GWAS can potentially identify a large 
number of SNPs that predict a selected phenotype and 
many MR studies use SNPs identified in credible GWAS 
as genome-wide significant predictors of the exposure of 
interest for estimation, that is those SNPs associated with 
the exposure with P < 5.0 × 10–8 (reF.41).

When using individual data, overlap between the 
dataset used for instrument discovery and the dataset 

Mendelian randomization
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Wild-type allele Variants

Disease
outcomes

Disease
outcomes

Randomized controlled trial

Sample

Random allocation to groups

Control Treatment

Disease
outcomes

Disease
outcomes

Statistical
tests

Random segregation of alleles

Statistical
tests

Fig. 1 | An overview of MR studies. This overview compares and contrasts the parallels 
between Mendelian randomization (MR) and randomized controlled trials (RCTs). In MR, 
randomization is due to the random allocation of alleles. This conceptualization was 
originally based on between-sibling variation, where allocation of alleles is random and 
not dependent on population-level variation (see also Box 1). Inference from MR in this 
way relies on the assumption of gene–environment equivalence — that a change in the 
exposure caused by genetic variation has the same effect on the outcome as a change  
in that exposure caused by environmental factors.

An RCT to test whether lowering CRP lowers SBP

Randomization to 
CRP-lowering medication

Genetic variant associated
with lower CRP (G)

a

An MR study to test whether lowering CRP lowers SBPb

Confounders (U)

CRP (X) SBP (Y)

CRP (X) SBP (Y)

Confounders (U)

Fig. 2 | Illustration of a randomized control study and instrumental variable estima-
tion. A randomized controlled trial (RCT) (panel a) and a Mendelian randomization (MR) 
study (panel b) to estimate the effect of lowering C-reactive protein (CRP) on systolic 
blood pressure (SBP). The arrows highlighted in red show the causal effect of interest.
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used for estimation can introduce a bias known as ‘win-
ner’s curse’. The goal of IV is to remove the effect on 
the exposure of variation due to confounders of the 
exposure and outcome. However, the best fitting model 
for the association of a SNP and the exposure will, by 
chance, pick up some variation owing to confounders. 
Although this bias is small and unimportant if the SNP 
has a very strong effect on the exposure, this is rarely the 
case. When many SNPs are used as IVs, each with a very 
small effect, this can create a non-trivial bias towards the 
conventional effect estimate, known as weak instrument 
bias42. This can be avoided through bias correction calcu-
lations or by using a two-sample approach and applying 
jackknife resampling to the estimation43–45. In a jackknife 
estimation, the data are divided into groups and each 
is then used for estimation, with instrument discovery 
conducted in the rest of the sample. The results for each 
group are then meta-analysed to obtain a result for the 
whole dataset (see preprint46).

Bias due to overfitting is a concern when summary- 
level data are used for estimation if the effect of the SNP 
on the exposure is in a dataset that overlaps with the 
dataset used to estimate the SNP–outcome association. 
Recent research has suggested that overlap between the 
samples used may not bias the results obtained by as 
much as previously thought, unless the instruments are 
not strongly associated with the exposure, and methods 
have been proposed to estimate the size of this bias and 
to correct for it43 (see preprints44,47).

Results
This section outlines methods used for MR estimation, 
tests for violation of the first IV condition and methods 
of estimation that are robust to particular violations of 
the second and third IV conditions. Here, we cover the 

main methods used for estimation. A number of other 
papers are available that cover guidelines for reading48, 
conducting39 and interpreting49 results from MR studies. 
STROBE guidelines for the consistent reporting of MR 
studies have also been published50,51. Additionally, the 
MR dictionary provides an extensive glossary of terms 
used in MR.

Individual-level data
Estimating causal effects. When using individual level 
data in MR estimation, genetic variants can either be 
used as separate instruments or combined into an allele 
score25. An allele score is generated by adding up the 
number of risk-increasing alleles for all the variants 
selected as instruments. This score can be unweighted, 
so that each SNP makes the same contribution, or 
weighted, so that the number of risk-increasing alleles 
at each SNP is multiplied by the estimated effect of 
that SNP on the exposure25. Weighted scores provide 
increased instrument strength and power, although 
there are cases in which the unweighted approach is 
preferable — for example, if the definition of the expo-
sure in the discovery dataset differs from the exposure 
variable in the estimation data. In such a case the weights 
will reflect the weight of the SNP on an exposure that is 
not the exposure included in the estimation. The more 
similar the definition of the exposure is in each sam-
ple the more preferable the weighted approach will be. 
Differences in scaling alone will not affect the prefer-
ence for a weighted score. Ideally, both SNPs and weights 
should be selected from a dataset that does not overlap 
with the dataset used to obtain the MR estimates, such as 
those from GWAS in non-overlapping datasets52. If many 
SNPs that each have only a small effect on the exposure 
are being used, combining them into a single score can 

Box 2 | Instrumental variable conditions

The instrumental variable (IV) conditions are required to hold for the results from any IV estimation — including a 
randomized controlled trial or Mendelian randomization (MR) estimation — to provide a valid test of the null hypothesis 
that the exposure has no effect on the outcome12,17,23,52,208.

One way that the IV conditions can be expressed formally is with directed acyclic graphs (see the figure)17; solid red 
lines show effects that must exist and dashed red lines represent effects that must not exist if an IV is to be used to assess 
the causal effect of X on Y. G is the IV (a genetic variant or set of genetic variants in MR). U represents unobserved 
confounders. We do not consider here the potential bias owing to selection.

The IV conditions are as follows.

• IV condition 1: relevance. The IV is associated with the exposure.

• IV condition 2: exchangeability. There are no causes of the IV that also influence the outcome through mechanisms 
other than the exposure of interest (no confounders of the IV and the outcome).

• IV condition 3: the exclusion restriction. The IV does not affect the outcome other than through the exposure and does 
not affect any other trait that has a downstream effect on the outcome of interest.

Only the first condition can be formally tested. The other two conditions can be disproved and otherwise assessed 
through a range of sensitivity analyses, but cannot be demonstrated to be true66,209. Methods for testing the first condition 
and of assessing the plausibility of the second and third conditions are discussed in the ‘Results’ section.

Condition 1

X YG

U
Condition 2

X YG

U
Condition 3

X YG
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increase the power of the analysis and reduce the risk 
of bias from many weak instruments26. However, if any 
SNPs violate IV conditions 2 or 3 (if any of the compo-
nent SNPs influence the outcome through a mechanism 
other than the exposure of interest) then the allele score 
will also violate that condition.

Estimation of causal effects using individual-level data 
is usually implemented with some version of two-stage 
least-squares (2SLS) estimation (alternative methods 
include likelihood approaches that are common in struc-
tural equation modelling)53. 2SLS estimation for MR uses 
genetic variants to obtain a predicted value of the expo-
sure X( )�  that is not associated with any of the unmeasured 
confounders. The first stage can be written as:

GπX π v= + + (4)x0

where X is the exposure of interest; G is a n × L matrix 
of genetic variants, where n is the number of individuals 
in the dataset and L is the number of SNPs; π is a vector 
of the effect of each genetic variant on the exposure of 
length L; π0 is a constant and Vx is a random error term. 
The outcome is then regressed upon the predicted value 
of the exposure, �X :

�Y α βX u= + + (5)

where Y is the outcome, α is a constant, β is the effect of 
the exposure on the outcome and u is a random error 

term assumed to be unrelated to vx. The four conditions 
for IV estimation imply that the assumption of inde-
pendence of u and vx is met and the estimated value of 
β — that is, �β , obtained from Eq. 5 — is a consistent 
estimator for the effect of X on Y. If the estimation is 
implemented using an allele score, Eq. 4 is replaced with:

X π π v= + S + (6)x0

where S is the allele score (weighted or unweighted) and 
π is a single coefficient for the association of the genetic 
score with the exposure. The second stage of the analy-
sis, Eq. 5, is the same whether we are using individual 
SNPs as instruments or an allele score. In both cases, the 
standard error should not be computed using the stand-
ard formula for linear models and should be corrected 
for the additional uncertainty owing to the inclusion of 
�X  in the estimation. IV estimation software packages 
implement this correction as standard.

Additional measured covariates can be incorporated 
into both stages of the estimation. The use of additional 
covariates should be considered carefully because covar-
iates can be influenced by the exposure or the outcome. 
In either of these situations, controlling for such a  
covariate could bias the MR effect estimate54–56.

Assessment of IV conditions. Regardless of the statisti-
cal method being used, it is important to assess the IV 
conditions. The first IV condition can be tested using a 
first-stage F statistic, which tests the association between 
the SNPs and the exposure. If the genetic instruments 
are not strongly associated with the exposure, then weak 
instrument bias can be introduced into the estimation42. 
The first-stage F statistic should be reported in all MR 
analyses. As a general rule, if the first-stage F statistic is  
greater than 10, the level of this bias is small57,58. A cut-off 
of F >10 has been used as a conventional threshold for 
a strong instrument in some studies. We note that this 
should not be used as a rigid rule and an F statistic 
<10 does not indicate that this instrument should not 
be used, rather that weak instrument bias should be  
considered as an issue in analysis.

Although the second and third IV conditions cannot 
be proved to be true, they can sometimes be disproved. 
Assessment of these conditions therefore focuses on dis-
proving them, and failure to disprove the conditions is 
interpreted as supporting the validity of the proposed IV.  
Genetic variants are fixed at conception, so it is not pos-
sible for conventional confounders such as age, sex or 
environmental risk factors to influence them. However, 
confounding of the genetic variants with the outcome 
in a sample can be induced by population stratification, 
dynastic effects and assortative mating59, violating the 
second IV condition. This confounding is not easily 
corrected with current MR methods and is discussed 
in more detail in the ‘Limitations and optimizations’ 
section.

Violations of the third IV condition can be caused 
by pleiotropy, where genetic variants have effects on 
multiple phenotypes60,61. This can include misspecifica-
tion of the primary phenotype where the phenotype of 
interest is not the phenotype that the SNP is primarily 

Box 3 | Point-estimate-identifying conditions

The instrumental variable (IV) conditions described in Box 2 are sufficient to test for the 
presence of a causal effect. However, performing estimation and interpretation of  
the causal effect requires at least one additional assumption. The effect of the exposure 
(X) on the outcome (Y) may differ for different people. These differences require 
additional assumptions to be placed on the relationship between the instruments, 
exposure and outcome to identify both the causal effect of the exposure on the 
outcome, and to whom that causal effect estimate applies. Each assumption gives  
a slightly different interpretation for the causal effects obtained from Mendelian 
randomization (MR) analysis.

There are two frequently used asumptions for point-estimate-identifying conditions. 
The first option is homogeneity of the effect of the exposure on the outcome, or that 
either (a) the effect of the exposure on the outcome is the same for everyone, regardless 
of the starting value of X or any other individual characteristics, or (b) the effect of the 
exposure on the outcome does not depend on the value of the instrument. Option (a) 
gives the interpretation that the causal effect estimate is ‘the causal effect of the 
exposure on the outcome’, whereas option (b) gives the interpretation that the effect 
estimate obtained is the ‘population average of the causal effect of the exposure on the 
outcome’. The second assumption is monotonicity in the association between the genetic 
variants and the exposure — that the direction of the effect of the genetic variant on the 
exposure is the same for everyone2,27,210–212. This gives the interpretation that the effect 
estimate is the effect of the exposure on the outcome in those people whose exposure is 
changed by the instrument. In MR, this is the average effect of differences in the exposure 
that are attributable to differences in the genetic variants. For continuous exposures or 
outcomes, violation of the IV conditions allowing point identification can be accessed 
through examination of the variance of the trait by the level of the instrument (either 
per-allele or in a binary dominant model, as appropriate). Violations will lead to 
differences in the variance of the trait across the level of the instrument213.

Which assumption is most relevant will depend on the particular estimation; however, 
the assumption of monotonicity is usually relevant for MR estimation. The point-estimate- 
identifying condition remains an area of debate and methodology development, with 
researchers identifying additional possible assumptions that would support a causal 
interpretation of the IV effect estimate.

First-stage F statistic
Test statistic used to test  
the strength of association 
between the instrument(s)  
and the exposure in an 
instrumental variable 
estimation.
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associated with8,61,62. Additionally, linkage disequilibrium 
means that the effects of neighbouring genetic vari-
ants can introduce additional associations between the 
variant of interest — and thus the exposure it relates  
to — and the outcome, creating a bias analogous to that 
caused by pleiotropy. Pleiotropy in the context of MR is 
described in FIg. 3. Many MR methods are available that 
are robust to different forms of pleiotropy and analyses 
using these different methods should be carried out in 
any MR study to determine how sensitive the results are 
to an assumption of no pleiotropy.

A final important source of bias in MR, and indeed 
all studies of observational data, is selection bias63,64. This 
selection could occur either from differential selection 
into the sample or selection on a competing risk for the 
outcome. Selection bias cannot be accounted for easily 
with existing MR methods and is discussed further in 
the ‘Limitations and optimizations’ section.

An approach for assessing the IV assumptions that 
is applicable when there are more IVs than exposures 
of interest is based on over-identification tests. These 
tests, such as the Sargan test65, leverage the expectation 
that if all proposed IVs are valid, they should deliver 
identical IV effect estimates. If the IV effect estimates 
from multiple IVs differ to a greater extent than expected 
owing to sampling error, then at least one is not valid 
for the exposure–outcome effect of interest. If all IVs 
are biased in the same way, over-identification tests will 

not identify the bias; for example, over-identification 
tests can incorrectly suggest a lack of pleiotropy even 
when it is present if similar pleiotropic pathways are 
likely to affect many or all proposed IVs or if there is 
population stratification biasing the association between 
many SNPs and the outcome in the same way24. They 
also rely on the assumption that each IV estimates the 
same causal effect, which may not be true for complex 
traits where different genetic variants potentially act as 
genetic instruments for different aspects of the trait. 
The weaker the effect of an IV on an exposure, the more 
imprecise the IV effect estimate will be and therefore 
the more likely it becomes that an instrument will fail to 
reject an over-identification test.

One further method for identifying potential viola-
tions of the IV conditions when the exposure is binary or 
categorical is using IV inequality constraints28,66,67. The 
IV conditions described above imply a set of mathemat-
ical patterns that must be true if the conditions are true; 
these patterns can be used to demonstrate that the IV 
conditions are not met if the equalities defined by those 
patterns do not hold. IV inequalities are rarely espe-
cially informative because they identify only extreme 
violations of the conditions. These inequalities can 
also be used to define non-parametric bounds for an 
IV estimate (those that would hold without the fourth, 
point-estimate-identifying condition discussed above). 
Although these bounds are often very wide, they can 
give a sense of how much an IV analysis depends on 
the point-estimate-identifying condition. An alterna-
tive approach for identifying violations of the IV condi-
tions is to examine the association between the genetic 
variants and other measured causes of the outcome, 
excluding any variables that are themselves on the same 
pathway as the exposure of interest (see preprint68)69. If a 
proposed genetic instrument predicts other causes of the 
outcome that are not thought to be along the same causal 
pathway as the exposure, it indicates that the proposed 
instrument is not valid.

Methods, such as sisVIVE70 and adaptive LASSO71, 
provide MR estimates that are robust to pleiotropy under 
certain assumptions. These methods assume that mul-
tiple IVs are available and that a majority or plurality of 
the proposed IVs are valid. Given this assumption, it is 
possible to estimate the magnitude of pleiotropic bias. 
An alternative approach is to adjust for pleiotropic effects 
of the genetic variants by accounting for the association 
between the genetic variants and potentially pleio tropic 
phenotypes. Methods that apply this approach include 
constrained IVs72 and multivariable MR73.

Tests to invalidate proposed IVs often draw on sub-
ject matter knowledge, such as an understanding of set-
tings in which a genetic variant does not influence the 
exposure, where the genetic variant may have different 
effects based on the level of an environmental variable 
(known as gene–environment interactions) or where 
the exposure should have no effect on the outcome, 
such as a negative control or zero-relevance point. The 
proposed genetic instrument should not be associated 
with the outcome in an environmental setting where it is 
not associated with the exposure unless there are pleio-
tropic pathways from the genetic variant to the outcome. 

Box 4 | Issues interpreting MR results

Gene–environment equivalence
Typically, Mendelian randomization (MR) considers exposures that are modifiable and 
so evidence of a causal effect of the exposure on the outcome can be used to infer that 
an exposure intervention will lead to a change in the outcome. However, making such 
an inference depends on the exposure of interest fulfilling the consistency criterion 
that however the intervention is applied to alter the exposure, the effect on the 
outcome is the same. This means that changes in an exposure by either a hypothetical 
change in genotype or by a change in the environment should produce the same 
downstream effect on an outcome31,214–216. For example, genotypic influences on 
circulating cholesterol level or a similar change in cholesterol level induced by dietary 
influences should lead to the same effect on coronary heart disease. Although many 
exposures can be closely proxied by genetic variation, for others — such as those that 
reflect aspects of social deprivation and income — it is unlikely that genetic variation 
will mimic environment changes exactly217. Gene–environment equivalence is a 
fundamental principle in MR and consideration should be given to how likely it is  
to hold when interpreting the results from any MR study.

Interpretation of results for time-varying exposures
Genetic variants are fixed throughout an individual’s lifetime and MR estimates can 
therefore be interpreted as the ‘lifetime effect’ of the exposure on the outcome1,9. If the 
association between the genetic variants and the exposure is constant across the life 
course, this lifetime effect can be interpreted as the effect of having a level of exposure 
that is a unit higher at every time point across the life course218. However, for many 
exposures the association between genetic variants and the exposure may vary across 
the life course; for example, genetic variants associated with body mass index have been 
shown to have a wide range of differential effects between childhood and adulthood141. 
In this scenario, MR estimates can be interpreted as the lifetime effect of being on a 
trajectory for the exposure associated with having an exposure level that is a unit higher 
at the time it is measured21. Multivariable MR can be used to estimate causal effects  
of the different time periods and potentially to identify particularly relevant periods 
across the life course141,219. That MR estimates the lifetime effect of the exposure on  
the outcome means that MR estimates can be larger than estimates obtained from 
alternative methods of estimation, such as randomized controlled trials, because the 
total length of time over which the exposure can have an effect is much longer.

Linkage disequilibrium
Correlation between genetic 
variants located closely 
together on the genome.
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A classic example of this type of analysis is examining 
the effect of alcohol consumption in populations where 
subgroups of the population (for example, women in 
some cultures) do not drink or drink very little74. If the 
IV conditions are satisfied, there should be no associa-
tion between genetic variants for alcohol consumption 
and the outcome under consideration among women in 
the previous example. Two methods, MR GxE and MR 

GENIUS, have extended and formalized these concepts 
and enable the estimation of causal effects in more gen-
eral settings. MR GxE uses an interaction between the 
genetic variant and a covariate to create a new IV (see 
preprint75)76; MR GENIUS uses variation that occurs 
owing to unobserved interactions between the genetic 
variants and covariates as the instrument75,77.

Summary-level data
Estimating causal effects. MR estimation with summary 
level data requires estimates of πl� , the estimated effect 
of genetic variant l on the exposure with variance σx l,

2 , 
and �Γl, the estimated effect of genetic variant l on the 
outcome with variance σy l,

2 . Inverse-variance weight-
ing (IVW) estimation is a meta-analysis of the variant  
specific Wald ratios for each variant, which are given as:

�

�
�β

π
=

Γ
l

l

l

where βl
�  is the effect estimated using genetic variant l. 

These individual ratios are weighted by their associated 
uncertainty; the IVW estimator β WIV

�  can therefore be 
computed as:
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where L is the total number of genetic variants included 
as potential IVs37. The IVW estimate can equivalently 
be obtained by regressing the genetic variant–outcome 
association, �Γl, on the genetic variant–exposure associ-
ation, πl� , (without an intercept) weighted by the inverse 
variance of the SNP–outcome association �σ(1/ )y l,

2 :

�� �β π u σΓ = + weighted by 1/l l l y lIVW ,
2

This equation describes a linear regression with the 
intercept fixed to zero as ~u N(0, 1)l , and is based on a 
dataset with L observations.

One important assumption for IVW estimation is 
that the genetic variants are independent of each other40. 
This assumption is usually satisfied by removing one of 
each pair of genetic variants that are in linkage disequi-
librium. However, methods are available that can take 
linkage disequilibrium into account between genetic 
variants in summary-level MR78,79. It is also important 
to ensure that data are harmonized to ensure that the 
values of �Γl and πl�  refer to the same effect alleles80.

Assessment of IV conditions. As with individual level 
data analysis, IV conditions need to be assessed for 
any summary-data MR. A number of different meth-
ods are available to correct for horizontal pleiotropy — a 
violation of the third IV condition — under different 
assumptions about the causal structure of that pleiot-
ropy. TABle 1 lists some of these methods, which pri-
marily draw on three approaches: outlier removal, 
outlier adjustment and adjustment for specific forms  
of pleiotropy. Many methods combine more than one of 
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Fig. 3 | Types of pleiotropy. Figure showing different types of pleiotropy in Mendelian 
randomization (MR), where G is a genetic variant or set of genetic variants associated 
with the exposure, X is the exposure of interest, Y is the outcome of interest, U is an 
unmeasured confounder and C is another (potentially unmeasured) phenotype that is 
also associated with the genetic variants. a,b | Horizontal pleiotropy. Sometimes referred 
to as biological pleiotropy, this occurs where a genetic variant is associated with multiple 
phenotypes and these phenotypes lie on different pathways. In horizontal pleiotropy 
with bias (panel a), the third instrumental variable condition (IV3) is violated because 
there is a pathway from the genetic variant to the outcome that does not occur via the 
exposure. In horizontal pleiotropy with no bias (panel b), as the genetic variants are not 
associated with other phenotypes on the pathway to the outcome, MR estimates are not 
biased. c | Confounding by linkage disequilibrium. When G2 has an effect on the outcome 
through a pathway that is not via the exposure, correlation between G1 and G2 creates a 
bias that is indistinguishable from that shown in panel a. d | Vertical pleiotropy. Another 
phenotype lies on the genetic variant–exposure–outcome pathway. This could occur 
either before or after the exposure of interest. Sometimes referred to as mediated 
pleiotropy, this form of pleiotropy does not bias MR studies and can even be used to 
elucidate causal intermediaries41. e | Misspecification of the primary phenotype. Vertical 
pleiotropy can bias MR estimates if the wrong phenotype is specified as the primary 
phenotype. Here the genetic variants are primarily associated with C. If X is misspecified 
as the primary phenotype, MR estimation of the effect of X on Y would be biased by the 
alternative pathways from C to Y8,61. f | In correlated pleiotropy, genetic variants for the 
exposure are also associated with a confounder of the exposure and outcome. In this 
setting, the size of the pleiotropic effect is correlated with the size of the association 
between the genetic variant and the exposure. This form of pleiotropy is particularly hard 
to detect and correct for. The scenarios in panels b and d produce settings where the 
pleiotropy will not bias the MR estimation. All other settings violate assumptions IV2 or 
IV3 and can cause meaningful bias in MR estimation.

Vertical pleiotropy
The phenomenon of a  
genetic variant associated  
with multiple phenotypes  
on the same pathway.
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these approaches. Outlier removal estimation involves 
the identification and removal of individual genetic 
variants for which the causal effect estimate obtained 
using that variant alone lies outside the expected range 
given the estimates obtained from other variants, so 
that they do not have an effect on the result obtained. 
Traditionally, summary-data MR is visualized as a scat-
ter plot plotting associations of the variant and expo-
sure against associations of the variant and outcome 
(FIg. 4a,b); however, this can limit the identification of 
outliers. Radial MR is a method for visualizing the data 
that can make outlying data points easier to detect81 
(FIg. 4c). An additional approach is to explore the effect 
of individual SNPs on the overall IV estimate, by meth-
ods such as leave-one-out analyses (FIg. 4d). Methods of 
estimation that use outlier removal include weighted 
median82, weighted mode83 and MR LASSO84. Outlier 
adjustment methods identify outlying variants and then 
perform an adjustment to either the effect obtained 
from that genetic variant or to the weight given to 
the estimate from that variant so that the variant has 
less influence on the overall estimation result. Many 
pleiotropy-robust MR methods fall into this category, 
including MR Tryx85, MR PRESSO86, MR Robust84, 
MR RAPS87, MR GRAPPLE88 and MR CAUSE89. The 
final broad category of pleiotropy-robust methods for 
summary-data MR estimation are methods that allow 
for most or all of the genetic variants included in the 

estimation to have pleiotropic effects on the outcome 
and to place other constraints on the pleiotropic effects. 
These methods include MR Egger90 and multivariable 
MR73,91. Each of these methods imposes strong assump-
tions on the nature of the pleiotropy. MR Egger analysis 
assumes that across all instruments, the magnitude of 
the pleiotropic effect is unrelated to the strength of the 
association between the genetic variant and the pheno-
type of interest (known as the InSIDE assumption). This 
assumption will not hold when there is correlated pleiot-
ropy (FIg. 3f). Multivariable MR assumes that pleiotropic 
pathways operate through known phenotypes that are 
also included in the estimation.

None of the methods described above is truly robust 
to all types of pleiotropy and each imposes different 
assumptions on the nature of the pleiotropy and how 
the pleiotropic effects are accounted for. Furthermore, 
many methods have less statistical power than conven-
tional MR, leading to very wide confidence intervals. 
Therefore, a few methods should be selected on the 
basis of the most plausible assumptions for the appli-
cation in question and used alongside an IVW MR 
estimation to perform a sensitivity analysis; this can 
determine how robust MR results are to the assump-
tion that genetic variants have no pleiotropic effects 
on the outcome under different alternative specifica-
tions. As a minimum, any summary-data MR estima-
tion usually includes weighted median and weighted 

Horizontal pleiotropy
The phenomenon of a genetic 
variant associated with 
multiple phenotypes  
on different pathways.

Table 1 | List of MR estimation methods

Category Core IV assumption 
relaxed

Individual-level data Summary data

‘Basic’ MR method None Wald ratio estimation, 2SLS 
regression analysisa

Wald ratio estimation, IVWa,37

Weak instrument 
robust methods

IV1; allows for weak 
instruments

LIML26, allele score 
approaches26

MR RAPS87, debiased IVW187, MR 
GRAPPLE88, NOME adjustment188, 
two-sample AR189

Outlier/variant 
selection and 
removal

IV3; allows for 
balanced/sparse 
pleiotropy

Weighted median190 Weighted mediana,82

Outlier/variant 
selection and 
removal

IV3; allows for (some) 
directional pleiotropy

sisVIVE70, adaptive LASSO71, 
weighted mode190

Weighted modea,83, MR LASSO84, Steiger 
filteringa,93, Welch-weighted Egger94, 
contamination mixture191, GSMR79, 
MR-Clust192, Bayesian MIMR193, CIV72

Outlier/variant 
adjustment

IV3; allows for 
balanced pleiotropy

Limited approaches currently 
available

MR RAPS87, MRCIP194

Outlier/variant 
adjustment

IV3; allows for (some) 
directional pleiotropy

Limited approaches currently 
available

MR TRYX85, MR Robust84, MR CAUSE89, 
MR PRESSO86, MR GRAPPLE88, MRMix195, 
MR-LDP196, IMRP197, regularization198, 
MR-PATH (see preprint199)

Estimation 
adjustment

IV3; allows for 
balanced pleiotropy

Limited approaches currently 
available

Debiased IVW187

Estimation 
adjustment

IV3; allows for (some) 
directional pleiotropy

Constrained IVs72, 
multivariable MR73

MR Egger90, multivariable MR73,91, MR 
Link200, hJAM201, GIV202, Bayesian network 
analysis203, BMRE204, BayesMR205

Environmental 
control adjustment

IV3; allows for (some) 
directional pleiotropy

MR GxE75,76, MR GENIUS77 Limited approaches currently available

2SLS, two-stage least-squares; IV, instrumental variable; LIML, limited information maximum likelihood; MR, Mendelian randomization. 
aMost frequently used methods; we note that each method relies on strong assumptions and may not be the most appropriate in  
any particular setting. These categories are not mutually exclusive and the classification of some methods may be ambiguous. Each 
method will impose some alternative version of the IV condition that is relaxed for consistent estimation with that method. Methods 
that are robust to directional pleiotropy impose (often strong) assumptions on the nature of that pleiotropy to enable estimation. 
Novel MR estimation methods are being developed continually and will generally fit into one or more of these categories.
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mode approaches, although these can be replaced with 
appropriate alternatives for the application in question. 
Additionally, these estimation methods will not neces-
sarily identify violations of any IV conditions that are 
not due to pleiotropy of the nature interrogated by the 
method. Consequently, consistent results across a range 
of methods is not a guarantee that results are free from 
bias. Potential violations of the IV assumptions not 
due to pleiotropy are discussed in the ‘Limitations and  
optimizations’ section.

Another form of pleiotropy arises when the expo-
sure for the MR estimation is misspecified and genetic 
variants associated with a confounder are used as 

instruments for the exposure under investigation 
(FIg. 3e). For example, BMI influences circulating CRP 
and if a genetic variant primarily associated with BMI is 
included as a genetic variant for CRP, misleading effect 
estimates of the causal effect of CRP on other pheno-
types — including BMI — can be generated61,92. These 
issues are increasingly important to consider because 
the sample sizes used in GWAS are increasing, making 
it more likely that a primary phenotype has been mis-
specified (in the context of GWAS, this could refer to 
the detection of genetic variants for an upstream phe-
notype of the exposure which potentially confounds 
the exposure and outcome, or genetic variants for the 
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Fig. 4 | Data visualization. Figure showing different visualizations of a summary-data Mendelian randomization (MR) 
analysis. The example shown is estimating the effect of body mass index on coronary heart disease (CHD). a | A scatter  
plot of the single-nucleotide polymorphism (SNP)–exposure and SNP–outcome associations for each SNP with an 
inverse-variance weighting (IVW)-estimated line fitted. The error bars around each point show the standard error of the 
estimated association between the SNP and the exposure and the SNP and the outcome. b | The same plot with the robust 
approaches of weighted mode, weighted median and MR Egger added (note that the weighted median line is obscured  
by the weighted mode line). c | The same data plotted using a radial MR framework to identify outliers; the horizontal  
axis shows the weight given to each point and the vertical axis shows the weight multiplied by the effect estimate.  
The IVW-estimated fitted line is shown. d | A leave-one-out analysis where the IVW estimate has been recalculated, 
excluding one SNP at a time, to look for SNPs that highly influence the overall result. These graphs were created using 
the ‘TwoSampleMR’ and ‘RadialMR’ R packages, using data from the OpenGWAS project. Code used to create these  
figures is detailed in the Supplementary information for illustrative purposes.
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outcome if the direction of effect has been misspecified). 
Steiger filtering attempts to correct for this misspecifi-
cation by removing SNPs that explain more variation in 
the outcome than the exposure93. Any genetic variant 
should explain more variation in the phenotypes that 
it is more proximal to; however, differing measurement 
error, substantially different sample sizes for each phe-
notype, or the presence of binary or categorical pheno-
types can lead to phenotypes that are less proximal to 
the genetic variant appearing to have more variation 
explained by the variant than more proximal phenotypes 
in the observed data. Additional methods are now being 
developed that attempt to resolve misspecification and 
confounding89,94,95.

Software packages
Any statistical package can be used for simple MR esti-
mates as the core IV estimate is derived from a two-step 
regression model. Deriving correct standard errors 
requires special calculations and variations on the 
standard model have been implemented as packages in 
common statistics packages such as Stata and R. A range  
of software packages are available in both Stata and 
R to conduct MR estimation, many of which include 
a range of assumption tests and options to conduct 
robust methods. The TwosampleMR R package links to  
the OpenGWAS project database (see preprint96), a large 
database of GWAS results that can be used in the estima-
tion. TABle 2 gives details of the most popular software 
packages currently available; an extended list is given in 
the Supplementary information.

Further extensions of MR methods
Bidirectional MR. In bidirectional MR, two MR analyses 
are conducted on the same pair of phenotypes by revers-
ing the exposure and the outcome. This method can be 
used to establish the direction of effect between two 
variables. For example, extensive observational evidence 
indicates that hearing loss predicts dementia and it is 
hypothesized to be an important causal determinant of 
dementia97; however, it is possible that the neurodegen-
erative disease that leads to dementia also causes hearing 
loss and thus the causal direction between hearing loss 
and dementia is unclear. There are known genotypes 
for both hearing loss and Alzheimer disease — the most 
common cause of dementia98–100 — and a bidirectional 
MR would first conduct an MR analysis of the effect of 
liability to dementia on hearing and then for the effect  
of hearing on dementia. If genetic variants known to 
associate with dementia influence hearing loss and 
genetic variants known to associate with hearing loss do 
not influence dementia risk, this suggests that hearing 
loss is a causal determinant of dementia.

Results from bidirectional MR studies should be 
interpreted with caution. Evidence of an effect in both 
directions could indicate a true bidirectional relationship 
between the exposures or be a product of bias from hori-
zontal pleiotropic effects in the variants, misspecification 
of the primary phenotype, or a violation of the second 
IV condition owing to confounding of genetic vari-
ants and outcome caused by factors such as population  
stratification and dynastic effects.

Multivariable MR. Multivariable MR is an extension 
of standard MR that includes multiple exposures, pre-
dicted by a set of genetic variants used as instruments. 
FIgure 5 illustrates a multivariable MR with two expo-
sures. Although multiple exposures can be included in a 
multivariable MR, there must be at least as many genetic 
variants or scores included as instruments as there are 
exposures. Multivariable MR can be estimated with either 
individual-level or summary-level data using exten-
sions of the 2SLS or IVW approaches, respectively73,101. 
Conditions required for estimation are adapted from 
the standard IV conditions and are defined as follows: 
each exposure must be robustly predicted by the instru-
ments, conditional on the other exposures included 
in the estimation (multivariable instrumental variable 
condition 1, or MVIV1); there must be no confounders 
of the outcome and any of the instruments (MVIV2) 
and none of the instruments can have an effect on  
the outcome that does not act through at least one of the  
exposures (MVIV3). If the above conditions are met, 
the estimates obtained from multivariable MR will be a 
direct effect of each exposure included on the outcome, 
given the other exposures included in the estimation73.

Multivariable MR can be used as an approach to 
address pleiotropic violations of the IV conditions. In 
a univariable MR where IV3 is violated and the genetic 
variants used as instruments for an exposure of interest 
are also thought to be associated with another trait on 
the path to the outcome, that trait can be included as an 
additional exposure in the multivariable MR estimation. 
Multiple, correlated exposures can be included in a mul-
tivariable MR; however, including multiple exposures 
can reduce power and potentially instrument strength 
and thus the benefit of adding extra exposures must be 
considered carefully. Bayesian approaches have been 
proposed for selecting a set of exposures where multi-
ple highly correlated exposures are potentially relevant 
for an outcome102. In addition, multivariable MR can be 
used for mediation analysis, as described below.

MR mediation analysis. MR can be used to estimate the 
proportion of the effect of an exposure on an outcome 
that is mediated by an intermediate phenotype103,104. 
Network MR and two-step MR use two univariable MR 
estimates to do this, estimating the effect of the primary 
exposure on the intermediate phenotype and the effect 
of the intermediate phenotype on the outcome105,106. 
Alternatively, multivariable MR can estimate the direct 
effect of each exposure on the outcome that is not medi-
ated by the other exposures included in the estimation. 
If all of the IV conditions are satisfied, this estimate will 
differ from a univariable MR estimate where all or part 
of the effect of the exposure on the outcome acts through 
a mediating phenotype included in the multivariable 
MR estimation103. Both two-step and multivariable MR 
can therefore be used as part of a mediation analysis to 
estimate how much of the effect of an exposure on an 
outcome acts through an intermediate phenotype103,104. 
When multiple intermediate phenotypes are thought to 
be potential mediators, two-step MR can estimate the 
proportion of the outcome mediated through each of 
these, whereas multivariable MR including all of the 

Bidirectional relationship
Where an effect acts in both 
directions between a pair of 
traits so that changing one will 
change the other.
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mediators considered will estimate the total propor-
tion of the effect of the exposure on the outcome that 
is mediated by the set. If the intermediate phenotype 
mediators are correlated, or one also mediates the effect 
of another on the outcome, the total proportion of the 
outcome mediated by all of the intermediate phenotypes 
may be less than the sum of the proportion mediated 
by each one individually; therefore, each of the above 
approaches will estimate different effects. A detailed 
description of the use of MR for mediation analysis is 
given elsewhere104.

Non-linear MR. Standard MR provides only a single 
effect estimate, which may not be informative if the effect 
of the exposure varies in a non-linear way — for example, 
a dose–response curve. With individual level data and a  
continuous exposure, non-linear MR can be applied to 
estimate whether the causal effect of the exposure on the 
outcome varies across different levels of the exposure29,107. 
For example, although mortality risk generally increases 
with BMI, an increase is also seen at very low BMIs; this 
J-shaped relationship may reflect weight loss in individ-
uals who are unwell, potentially before their illness is  
diagnosed. Non-linear MR has supported this, although 

it has also suggested that the J-shape could be caused by 
the relationship between BMI and mortality risk differing  
for ever-smokers and never-smokers108.

Testing for interactions between exposures. With 
individual-level data, it is possible to test for inter-
actions between two exposures using MR. When 
individual-level data are available to conduct a multi-
variable MR, interactions between the exposures can be 
included as additional exposures in the estimation109,110 
This requires a multivariable MR estimation including 
the exposure, the potential effect modifier and the inter-
actions between them included as exposures. The inclu-
sion of these additional terms decreases the statistical 
power for detecting an effect and should be limited to 
a single interaction. An alternative approach is to split 
the allele scores for each exposure into high and low 
values and to compare outcomes across the resulting 
four groups by dividing participants up on the basis of 
their score for each exposure, mimicking a 2 × 2 factorial 
randomized trial. It should be noted that this approach 
can have low power compared with the inclusion of an 
interaction term in a 2SLS regression110.

Colocalization and MR
Ever larger GWAS have now provided evidence that 
hundreds of genetic variants can be associated with 
many human phenotypes. This, together with the ten-
dency for neighbouring genetic variants to be corre-
lated owing to linkage disequilibrium, could lead to the 
violation of IV condition 2, in which different neigh-
bouring variants happen to be causally associated to 
the exposure and outcome through different pathways 
(FIg. 6a). The bias in this situation is equivalent to that 
caused by pleiotropy (FIg. 3) and, although it is unlikely 
that this pattern will arise at many independent genetic 
locations in MR studies with multiple IVs, it should be 
a consideration in single-IV studies.

Colocalization analysis can be used to determine 
whether two traits share causal variants in a single 
genetic region, without prior knowledge of which vari-
ant is causal for either trait. It was originally used to 
identify potential molecular causes of single GWAS 
associations and considers the patterns of association 
across multiple neighbouring genetic variants for the 
GWAS and exposure traits (including molecular traits). 
Although this involves an implicit assumption of direc-
tionality in its interpretation, the test is not dependent 
on this assumption and indeed a single pleiotropic var-
iant would satisfy the statistical definition of a shared 
causal variant (FIg. 6b). Unlike in MR with multiple IVs, 
the majority of multiple neighbouring genetic variants 
considered in this analysis are expected to be associ-
ated with either trait solely through linkage disequilib-
rium with one or a small number of causal variants in 
the region. This explicit use of linkage disequilibrium 
means that colocalization can be used to check for the 
violation of IV condition 2 in the form shown in FIg. 6a 
(and FIg. 3c).

One colocalization method originally proposed 
by Plagnol et al.111 frames shared causality as the null 
hypothesis, and rejection of this would indicate violation 

Table 2 | Summary of selected software packages for performing MR analyses

Package name Software Description

Individual-level data

AER R Includes the ivreg function for 2SLS 
estimation

OneSampleMR R Various functions for one-sample IV 
analyses, including the Sanderson–
Windmeijer F statistic, and various 
estimators (two-stage predictor 
substitution, two-stage residual inclusion, 
structural mean models)

ivmodel R Various functions for individual-level IV 
analyses, includes LIML, weak instrument 
tests and sensitivity analyses

ivtools R Various functions for individual-level IV 
analyses, including functions to fit structural 
mean models

ivonesamplemr Stata Includes various estimators (two-stage 
predictor substitution, two-stage residual 
inclusion, structural mean models) for 
one-sample IV analyses

ivreg2 Stata Stata module for extended IVs/2SLS and 
generalized method of moments estimation

ivregress Stata Linear IV estimators including 2SLS

Summary-level data

MendelianRandomization R Implements several methods for performing 
MR analyses with summarized data and an 
interface with the PhenoScanner database

TwoSampleMR  
and MR-Base app

R/web-app MR-base is an analytical platform for MR. 
TwoSampleMR is the R package providing 
the functions to perform MR estimation. 
Both are linked to the OpenGWAS project,  
a large database of GWAS summary statistics

mrrobust Stata Provides various programs for two-sample 
MR analyses in Stata

2SLS, two-stage least-squares; GWAS, genome-wide association study; IV, instrumental 
variable; LIML, limited information maximum likelihood; MR, Mendelian randomization.
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of IV condition 2, that is, that there are no common 
causes of the instrument and the outcome111–113. 
However, it is hard to determine whether failure to 
reject the null hypothesis indicates that IV condition 2 
is satisfied or a lack of power in the colocalization test. 
Alternatively, Bayesian frameworks for colocalization 
analysis consider GWAS summary statistics for both 
traits across multiple SNPs in the region around the IV 
and assess either the evidence that each variant is jointly 
causal114 or consider shared causal variants as one of 
five competing hypotheses115. A key difference between 
MR and Bayesian colocalization strategies is that the 
latter assume summary data to exist for multiple vari-
ants in a region, with sufficient density such that any 
causal variant or variants for an outcome and exposure 
are likely to be included in the set of variants studied. 
This assumption is required because Bayesian colocali-
zation approaches enumerate all possible configurations 
of causal variants for each trait and assess the relative 
likelihood of each combination. A further difference is 
that in Bayesian colocalization strategies the user must 
supply parameters describing their prior belief that the 
outcome and exposure share causal variants; these may 
be different in the context of the carefully chosen traits in 
MR compared with those in more typical uses of colocal-
ization, and thus sensitivity analyses are recommended 
to confirm the robustness of inference to changes in 
prior parameter values116.

Gene expression and proteins are often instrumented 
with a single genetic variant and so colocalization can be 
particularly useful in MR studies of these exposures41; 
in these settings colocalization can be used to attempt 
to falsify IV condition 2 by testing the hypothesis of a 
shared causal variant for the exposure and outcome.

Applications
Below we describe five applications of MR. The studies 
described below have used MR to make important the-
oretical or practical contributions to understanding the 
causes of disease and some have implemented recently 
developed enhanced analytical approaches.

Estimation when trials are unfeasible
Conventional observational epidemiological studies 
have long suggested a J-shaped relationship between 
alcohol and risk of cardiovascular disease (CVD)117–119. 
It was unclear from these studies whether the J-shape 
reflected a true non-linear cause and effect relationship, 
was caused by confounding by socio-demographic fac-
tors, or was present because individuals with low alco-
hol consumption had a higher apparent risk of CVD 
owing to a reduction in alcohol consumption caused 
by sickness (a form of reverse causation known as ‘sick 
quitters’). Although efforts were made to assess this 
question using a RCT120, the trial was terminated by the 
US National Institutes of Health (NIH) following con-
cerns regarding the study design and influence from the 
alcohol industry121–123. Furthermore, ethical issues exist 
in deliberately exposing individuals to alcohol, which 
is a named carcinogen by the International Agency for 
Research on Cancer (IARC)124 and is recognized to have 
multiple detrimental effects on human health including 

liver disease, depression, and cancers of the oesophagus 
and liver125.

Early MR studies in individuals with European 
ancestry using a single genetic variant (rs122994) in the 
ADH1B gene126,127 suggested that the apparent protec-
tive effect of alcohol on the risk of CHD and ischaemic 
stroke shown in epidemiological studies might not be 
real. However, use of a single genetic variant with a 
modest effect on the magnitude of alcohol consumption 
meant the relationship across the distribution of alco-
hol consumption could not be explored128. In a recent 
study, Millwood and colleagues129 used genetic variants 
in ALDH2 and ADH1B, which together explained con-
siderable variation in alcohol use. Across the distribu-
tion of genetic variants, the average amount of alcohol 
consumed varied from 4 g per week to 256 g per week. 
Applying these genetic variants to the China Kadoorie 
Biobank, they found strong evidence of a dose–response 
relationship between alcohol and risk of stroke, and no 
strong evidence of a protective or detrimental effect on 
risk of CHD. In the same study, they were able to show 
the J-shaped observational association between alcohol 
and CHD and stroke that had been observed elsewhere. 
Further, use of negative controls (specifically, explora-
tion of the effect of the genetic instrument in women 
who did not drink alcohol), empirically demonstrated 
that the genetic instrument was unlikely to have effects 
on disease independent of the exposure of interest. Thus, 
available evidence from MR methods that facilitate esti-
mation in the presence of unobserved confounding 
— assuming no selection bias — do not support the 
conclusion that the consumption of a moderate amount 
of alcohol may lower vascular disease risk and identify 
alcohol consumption as a factor linked to increased  
likelihood of ischaemic stroke.

Cholesterol and CHD
Cholesterol circulating in the blood plays a central role 
in atherosclerosis, the disease process affecting arteries 
that leads to symptomatic cardiovascular disease includ-
ing CHD and ischaemic stroke130. An inverse association 
between high-density lipoprotein cholesterol (HDL-C) 
and CHD risk was reported over a number of observa-
tional studies, leading to the widely held belief that high 
levels of HDL-C are protective against CHD risk131–134. 
This association was observed to be persistent even 
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Fig. 5 | Illustration of the multivariable MR model. Figure 
illustrating multivariable Mendelian randomization (MR) 
for three genetic variants (G1, G2, G3), two exposures (X1, X2) 
and an outcome Y. Confounders U1 and U2 are assumed to 
be unknown.
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when other lipid fractions were accounted for, suggesting 
this association was not owing to confounding133.

MR studies have provided accumulating evidence 
against the observational results above135–138. Such MR 
studies used a range of genetic variants that act through 
different mechanisms and showed no protective effect of 
increased levels of HDL-C on CHD risk. These studies 
were published alongside the results of several large-scale 
RCTs of pharmacological interventions that specifically 
increased HDL-C without a noticeable change in other 
blood lipids such as LDL-C, which also failed to show a 
protective effect139,140. These data indicate that the asso-
ciation observed in the more traditional observational 
studies was likely to have been due to confounding. It is 
worth reflecting on whether the RCTs would have been 
embarked upon if the MR study findings were known at 
the time of their inception134. Indeed, where data already 
exists, MR studies are relatively cheap to conduct —  
particularly compared with a large RCT — and can  
provide additional evidence that can be used to direct 
which studies are worth following up with RCTs. 
However, it must be noted that MR studies are them-
selves not free from issues of bias or lack of power;  
evidence from MR studies for the presence or absence 
of an effect should be triangulated with findings from 
studies using different methods that would be expected 
to have different sources of bias6,7.

Testing causation across the life course
A key issue in preventing disease in adulthood is iden-
tifying when in the life course harmful exposures must 
be minimized. For example, if the contribution of expo-
sures in childhood is non-reversible, this evidence would 
argue in favour of early intervention. This is challenging 
to appraise using conventional observational epidemi-
ology owing to various features such as time-dependent 
confounding.

One example of this issue is the relationship between 
adiposity and adult-onset diseases such as CHD and type 2  
diabetes (T2D). An MR study141 took an innovative 
approach by constructing separate genetic instruments 
for early-life body size and adult body size. The authors 
were able to fit a multivariable MR model to elucidate 
whether childhood body size was detrimental to the 
risk of CHD or T2D after taking adult body size into 
account. A direct effect of childhood body size in the 

multivariable model would suggest that high adiposity  
in childhood has a long-term effect on health outcomes in  
adulthood — suggesting that focusing on early inter-
ventions in childhood to minimize excess body weight 
would be helpful in lowering the risk of diseases that typ-
ically present in adulthood. As UK Biobank participants 
were asked for information on their body size at 10 years 
of age and BMI was measured at recruitment into the 
study142, these data provided an opportunity to conduct 
GWAS on body size during childhood and adulthood 
for the same group of individuals and detected 295 and  
557 independent SNPs associated with childhood  
and adulthood body size, respectively, with a high level 
of overlap in the SNPs associated with each time period, 
as expected141. Univariable MR analysis showed that 
both genetically predicted body size in early life and 
adulthood were individually related to higher risks of 
CHD and T2D and a lower risk of breast cancer. By 
contrast, multivariable MR analysis identified that only 
adult body size showed an independent causal effect for 
CHD and T2D, suggesting that the relationship between 
early-life body size was mediated through adult body 
size. By contrast, the inverse relationship between genet-
ically predicted body size and breast cancer was stronger 
for early-life body size than adult body size in the multi-
variable MR analysis, suggesting an age-dependent 
relationship between adiposity and the risk of different 
diseases in adults. This suggests that for children that 
are overweight, losing weight in their adulthood can 
still effectively lower risk of T2D and CAD and in this 
case a metabolically unhealthy childhood can poten-
tially be offset by healthy lifestyle approaches adopted 
in adulthood.

Such study designs can be applied to other exposure– 
outcome relationships to determine whether risk fac-
tors have cumulative effects or differential influences 
at different periods of the life course. This information 
could allow for fine-tuned, age-specific public health 
interventions that minimize the effects of deleterious, 
time-dependent risk factors. However, it is very impor-
tant to bear in mind that effects of harmful exposures 
may become less evident with increasing age because of 
selection bias owing to the almost inevitable selection 
of survivors143.

Estimation of health-care costs
A clear understanding of the health-care costs arising 
from individual diseases and risk factors is needed 
to ensure that public health resources are distribu-
ted judiciously. RCTs are typically not designed to 
estimate health-care costs as an outcome and con-
ventional observational studies aimed at assessing 
health-care costs can be hampered by selection bias 
and confounding.

Dixon and colleagues144 described a potential appli-
cation for MR in quantifying the effects of genetically 
predicted BMI on health-care costs. Their method 
used data from the UK Biobank, which provided a rich 
source of data for exploring the causal relationship of 
lifelong exposures to certain traits and genetic liability 
to diseases and their economic impact. Using genetic 
variants associated with higher BMI as instruments in 
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Fig. 6 | Illustration of variants in linkage disequilibrium and shared causal variants 
identified by colocalization. a | An example of distinct causal variants that violate the 
instrumental variable assumption IV2. G1 and G2 represent two genetic variants and  
the link between them is non-directional, reflecting linkage disequilibrium. b,c | Examples 
of a shared causal variant are a violation of assumption IV2 (panel b) and a situation that 
satisfies the IV assumptions (panel c).
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an individual-level MR study to estimate the effect of 
BMI on hospitalization costs145, the authors found that 
higher BMI increased hospital costs with little evidence 
for non-linearity in this effect. In addition to physi-
ological consequences, body weight has social con-
sequences such as increasing exposure to stigma and 
discrimination and these MR analyses include the con-
sequences of all such mechanisms for hospitalization  
costs.

Testing treatment response factors
Identifying whether individuals are likely to respond to a 
specific therapy is an important component of so-called 
‘precision medicine’, whereby the goal is to individualize 
patient care based on genetic, environmental and life-
style factors. This can be done in conventional pharma-
cogenetic studies and RCTs, although the risk of bias in 
the former and the sample size constraints of the latter 
mean that neither provide a reliable means of assess-
ing interactions between an individual’s genotype and  
treatment response.

A recent study by Xu and Burgess146 used a drug- 
target MR design41,147 to investigate polygenic deter-
minants of the response of LDL-cholesterol levels to 
treatment with statins. The authors used SNPs in and 
around the HMGCR locus as a mimic of the pharma-
cological inhibition of HMG-CoA reductase by statins, 
and explored genetic variants that might act as effect 
modifiers of the association between the statin genetic 
instrument and LDL-cholesterol levels. Polygenic scores 
did not identify any effect-modifying genetic groups; 
however, a single variant (rs162724) proximal to the glu-
tamate receptor gene GRM7 and previously associated 
with major depressive disorder was found to potentially 
be of interest. The authors postulated that this vari-
ant could be related to statin response via concurrent 
pharmacotherapies for major depressive disorder or via 
poorer adherence to statin treatment reducing the effect 
of statins on LDL-cholesterol.

Although the above study did not find evidence of 
reliable polygenic effect modification, it introduces the 
concept of agnostic identification of pharmacogenetic 
interactions within the context of a population-based 
study. This approach benefits from lack of confound-
ing by indication, compared with a conventional phar-
macoepidemiology study design148. However, using a 
genetic instrument for treatment as part of a drug-target 
MR means that the underlying magnitude of the effect 
for which potential genetic effect modifiers are investi-
gated is very small and thus very large sample sizes are 
needed to identify effects. When using MR in this way, 
it is important to identify appropriate instruments for 
estimating the effect of a particular drug. Instruments 
that are associated with the target of that drug should be 
used, rather than those associated with the risk factor 
that the drug acts on41,149,150.

Reproducibility and data deposition
There has been substantial discussion of the importance 
of ensuring that published research findings are robust, 
replicable and reproducible in recent years151. In the con-
text of epidemiological research, one area of concern is 

that findings may be replicated in settings with nearly 
identical sources of bias. Data with such replication 
provide little independent confirmation of the initial 
result and thus even highly consistent replicated find-
ings may not reflect true causal effects. An example is 
the J-shaped association between alcohol consumption 
and cardiovascular disease; there is now consensus that 
this apparent protective effect of moderate levels of 
consumption is artefactual, as discussed above129. One 
simple step authors can take to ensure that MR findings 
are robust and reproducible is to use the STROBE-MR 
guidelines50,51, which outline how MR studies should be 
reported to make the approach used in any particular 
study clear for readers.

The first aim of all studies should be to ensure that 
steps are taken to detect and minimize biases such as 
selection bias or bias caused by violation of one of the 
IV conditions. Triangulation of evidence from multi-
ple methodologies — using different methodologies 
that are subject to different sources and directions of 
potential bias — can help to identify bias in MR stud-
ies6,7,152. Alignment of results across these different 
methodologies can improve confidence in an initial 
causal interpretation. Among the most promising strat-
egies for triangulation is contrasting MR results with 
results using other IVs — such as policy-based IVs — 
or results from conventional analyses. For example, 
there is clear evidence from both MR and the natural 
experiment of an increase in the school leaving age that 
an increase in the number of years in education has 
a causal protective effect on health behaviours such 
as smoking153–156 (see preprint157). Within MR, using 
methods that make different assumptions (such as 
those regarding pleiotropy) and are therefore subject 
to different sources and directions of potential bias 
can support this approach, although some important 
assumptions may be shared by many methods, reduc-
ing the potential independent insight to be gained from 
comparing studies.

Open research can increase the robustness of data 
by enabling greater scrutiny of data and increased error 
detection by researchers and the wider research com-
munity. Open research approaches for increasing data 
transparency include protocol pre-registration and 
sharing of data, code and materials. Summary data from 
GWAS are often a source of data for MR analysis and 
are typically publicly available, such as those listed on 
the OpenGWAS project. Although individual-level data 
are not made publicly available owing to the sensitive 
nature of the data, there are a number of large datasets 
that are accessible to any researchers on application, 
such as the UK Biobank. Any MR estimation should 
clearly indicate the data sources they have used and link 
to the dataset used if it is publicly available. The source 
code for many software packages is openly available (for 
example, TwoSampleMR and mrrobust on GitHub, and 
MendelianRandomization on CRAN). Although the 
analysis code from MR studies is not routinely shared, 
we would encourage readers of this Primer to do so to 
enable errors in coding to be more readily identified. 
Pre-registration of study protocols has not been widely 
adopted in observational epidemiology, although it 
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could in principle be applied and would help to pro-
tect against biases such as publication bias against null  
results or findings that do not fit with the anticipated 
conclusion158 (see preprint159).

Limitations and optimizations
An important limitation of MR studies is the potential 
confounding of the genetic variants and the outcome 
(violation of IV condition 2; Box 2). As genetic variants 

are generally fixed at conception, it is not intuitively clear 
how confounding of the instrument and the outcome 
can occur in MR studies. However, population stratifi-
cation, dynastic effects and assortative mating all induce 
bias by creating an artefactual relation at the population 
level between the genetic variants and the outcome, 
violating the second IV condition64,160–163. Each of these 
sources of confounding are described in detail in Box 5. 
This correlation between genetic variants and the out-
come can potentially affect most (or all) of the genetic 
variants used as instruments; it is therefore not easy to 
correct for using current MR methods given that most 
assume that the majority of genetic variants satisfy all of 
the IV conditions60. Considering the potential for biases 
of the sort described here is therefore crucial in the  
interpretation of any MR result.

One solution that can account for confounding 
owing to dynastic effects and assortative mating is the 
use of family data to conduct the MR analyses164,165. 
Within-family MR requires data from either pairs 
of siblings or mother–father–child trios and allows 
for the estimation of causal effects using MR after 
family-level structure has been taken into account161,164. 
Within-family MR using sibling pairs will also account 
for any factors acting at a population level that affect 
siblings equally, such as population stratification. 
A key limiting factor for within-family MR is the lack 
of available data and the low power of these studies as 
a result; however, a GWAS of family data for a range 
of phenotypes has recently been published, enabling  
further within-family MR in the future166.

Another type of bias that can arise in MR studies 
that cannot be easily corrected for is selection bias63. In  
an MR study, an example of selection bias would be if 
an individual’s exposure and outcome values affected 
their participation56. When these phenotypes are par-
tially determined by genetic variants, this will also 
induce an association between those genetic variants 
and participation. Study participation has been shown 
to be heritable and is influenced by a number of different 
traits, and large studies such as the UK Biobank have 
been shown to have high levels of selection in those who 
participate30,167–169.

In addition, most studies recruit survivors of the orig-
inal birth cohorts. This means all participants must have 
survived in order to observe whether they get the out-
come of interest. Selection of participants on surviving 
their genetic make-up and the outcome of interest or a 
competing risk of the outcome effectively applies covar-
iable adjustment on survival into the estimates170–172. 
This form of selection bias is likely to be particularly 
problematic for studies of harmful exposures on disease 
outcomes that occur in later life and will be least evident 
in studies where the exposure does not affect survival 
to recruitment173. As such, consideration of whether the 
genetically instrumented exposures would affect survival 
to recruitment, age at recruitment or any competing risk 
of the outcome may help to identify bias. This type of 
survival bias will affect observational studies of the same 
research question in similarly aged populations, so it is 
not an obvious explanation for discrepancies between 
MR and conventional results. All forms of selection bias 

Box 5 | Sources of instrument–outcome confounding in MR studies

Population stratification
Population stratification is the association between genetic variants and phenotypes 
that occurs because of underlying structure within the population52,220. This underlying 
structure reflects the fact that genetic mutations accrue and accumulate across  
generations, and that individuals differentially select partners who are geographically 
proximal. Within genome-wide association studies, population stratification is often 
controlled for by adjusting for the top principal components from a principal compo-
nent analysis of the genetic variants or through the use of linear mixed models221–223. 
However, there is increasing evidence that these approaches do not fully account for 
the underlying structure for a number of phenotypes224,225. Population stratification can 
bias estimates from Mendelian randomization (MR) studies by creating an association 
between the genetic variants and the outcome as illustrated in panel a of the  
figure161,224. In the figure, G represents genetic variants, X represents exposure  
and Y represents outcome in a MR study.

Dynastic effects
Dynastic effects are the direct effects on an individual’s phenotypes of the phenotypes 
of their parents, and (potentially to a lesser extent) more distantly related relatives such 
as grandparents. As parental genotypes have a direct effect on the genotype of an 
individual, if a parent’s phenotype is influenced by their genotype and influences the 
individual’s phenotype this will induce confounding between the genetic variants and 
phenotype of the offspring, as illustrated in panel b of the figure162. If the exposure has  
a non-null causal effect on the outcome in a MR study, these dynastic effects will induce 
instrument–outcome confounding and bias the results of the MR study161. In the figure, 
GA, XA and YA are the genetic variants, exposure and outcome respectively for ancestors 
(such as parents) of the individuals under consideration in the MR estimation.

Assortative mating
Assortative mating occurs when individuals select partners who are more similar  
to themselves than would be expected by chance, with respect to one or multiple 
phenotypes226,227. If the genetically influenced level of the phenotype influences 
selection, this assortment can lead to spurious genetic associations with the phenotype 
or phenotypes on which the assortment is based or that are causally dependent on  
the assortment phenotypes. This consequently biases MR estimates involving these 
phenotypes160,161.

Transmission ratio distortion
Transmission ratio distortion occurs when the transmission of alleles from parents  
to offspring deviates from the expected probability of 50:50. This can occur owing to 
processes during meiosis and fertilization favouring one parental allele over another  
or if the viability of the offspring depends on their genotype. If environmental factors 
influence the transmission ratio distortion, those environmental factors will become 
associated with genotype in the offspring. The association between any environmental 
factor and the genotype can lead to the potential for instrument–outcome confounding 
in MR if the environmental factor also influences the outcome164. Until recently, data  
on parent–offspring trios were not available at the scale required to investigate this 
possibility, but this is now becoming possible228.

X YG

U

X YG

XA YAGA

a b

16 | Article citation ID:             (2022) 2:6  www.nature.com/nrmp

P r i m e r

0123456789();: 



could bias MR estimates and so careful assessment of 
the potential for selection into the sample or samples 
used in an MR study is important64. Novel methods are 
being developed that attempt to detect and correct for 
selection bias171,174; however, this is an area in which  
further research is required.

Finally, MR uses genetic variants that are fixed 
across the life course to estimate the lifetime effects 
of the exposure of interest. This introduces a potential 
limitation in the form of canalization, which refers to 
a natural tendency for the suppression of phenotypic 
variation among individuals despite contrasting geno-
types. Canalization can occur when polymorphic phe-
notypes expressed during fetal development lead to the  
development of compensating pathways to mitigate  
the effects of that expression1,175,176. For example, indi-
viduals with genetically elevated fibrinogen levels could 
become resistant to the effects of higher fibrinogen 
owing to permanent changes in tissue structure during 
fetal development. Canalization is seen following dra-
matic genetic or environmental changes, for example in 
gene-knockout studies177,178. Such compensation would 
potentially limit the ability of MR to identify the causal 
effect of the change in the exposure because the effect 
of a genetically induced change from conception would 
be different from the effect of a change in later life. 
This is an example of a violation of the assumption of 
gene–environment equivalence (Box 4). Further work is 
required to understand whether small changes induced 
by the common polymorphisms used to estimate 
causal effects in MR lead to the same compensatory  
effects.

Outlook
The rapid increase in MR publications demonstrates the 
need for approaches that can contribute to strengthen-
ing causal inference. This growth in the quantity of pub-
lished MR studies comes with anxiety regarding their 
quality. Papers reporting two-sample MR have grown 
rapidly over recent years and now constitute a large 
majority of published studies8,80. These are relatively 
easy to conduct — perhaps too easy — and they can 
contain obvious errors, as discussed and demonstrated 
elsewhere80. Indeed, many such papers simply report 
MR estimates obtained from applying open-access soft-
ware to open-access data and in these cases the analyses 
have, in essence, already been conducted by automated 
tools — an observation detailed in a preprint article179. 
The situation with MR is now moving towards the one 
seen in the meta-analysis literature, with the mass pro-
duction of redundant, misleading and conflicted publi-
cations180. The current explosion in predatory journals 
unfortunately means that this situation is very unlikely 
to change. There are now a number of guidelines availa-
ble for MR estimation, and those regarding the conduct39 
and reporting of MR studies50,51 are useful for under-
standing and identifying whether a MR study has been 
well conducted and reported properly. For those aiming 
to keep up with the MR literature, the twitter account 
@MR_lit searches for papers and preprint articles and 
allows readers to rapidly review abstracts to identify 
papers of interest.

As most contemporary MR studies rely on available 
GWAS data, they unfortunately suffer from considera-
ble bias with respect to the representativeness of pop-
ulations according to geography and ancestry181. This 
can influence the generalizability of MR findings and 
exacerbate existing inequity in medical research. It can 
also restrict the scope of MR studies, as some forms of 
genetic variation are restricted to particular populations. 
For example, a large-effect genetic variant influencing 
alcohol consumption that has been of considerable value 
in MR studies of the effects of alcohol74,129 is only prev-
alent in East Asian populations. Current international 
efforts to equalize inclusion of different populations 
in genetic studies will hopefully begin to address this 
important issue.

A large area of medical research is aimed at iden-
tifying potentially therapeutic influences on disease 
progression once the disease is established. However, 
MR studies usually rely on GWAS of the initial develop-
ment of disease for their outcome data. This means that 
although MR has been a powerful tool for confirming or 
discovering factors that cause disease, it does not often 
identify therapeutic targets182. For example, although 
MR studies have shown that smoking causes lung can-
cer183, this is not useful therapeutically following the 
onset of the disease given that smoking cessation is not 
a useful treatment once lung cancer has developed. It is 
plausible that in many cases, factors that cause a disease 
do not relate to its progression once it is established. For 
example, the onset and progression of Crohn’s disease 
are associated with different genetic variants, indicating 
that different risk factors play a part in onset and devel-
opment184. It is also possible that the same risk factor 
could have opposite effects on incidence and progres-
sion, as has been suggested for folate intake and colon 
cancer185. MR of factors influencing disease progression 
is needed to identify useful treatments186; however, such 
estimation requires appropriate datasets and as there 
are currently few of these in existence, efforts should 
be focused on increasing the availability of such data. 
Importantly, case-only study designs may be severely 
compromised by collider bias55,63, which must be taken 
into account in data analysis182. Further methodological 
development is required in this domain.

Although the increasing size of GWAS datasets 
appears to be good news for MR studies, it can also 
introduce problems; smaller and smaller effect sizes are 
being identified as ‘genome-wide significant’ in GWAS 
and it is increasingly likely that such variants affect the 
trait of interest through an upstream phenotype that 
might in turn influence the outcomes under investiga-
tion. For example, as the GWAS of CRP and vitamin D 
increased in size, multiple variants that primarily influ-
ence adiposity were identified — with adiposity being 
a confounder of the observational association of these 
exposures with health outcomes. If these variants are 
used as instruments for CRP or vitamin D, they will pro-
duce highly misleading results. The resulting bias can be 
accounted for through multivariable MR if the upstream 
factor is known; however, in many cases it is not known 
and so the bias will remain undetected. This issue of 
misspecification of the primary phenotype8,61 requires 

Collider bias
Bias occurring owing to 
conditioning on a variable that 
is dependent on both the 
exposure and outcome or is 
dependent on causes of the 
exposure and outcome.
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more research to identify the extent of the problem of 
recapitulating confounding in MR studies as GWAS size 
increases.

When initially presented, it was concluded that 
“[MR] offers a more robust approach to understand-
ing the effect of some modifiable exposures on health 
outcomes than does much conventional observational 
epidemiology”1 and that, where possible, RCTs should 

follow to establish the effects of interventions. This con-
clusion remains unchanged, although moving towards 
formal triangulation6,7,152 of all pertinent evidence as dis-
cussed in this Primer should be the goal of all research 
aimed at identifying causal influences on health and 
development outcomes.
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